Kinetic Analysis of Thermal Degradation of Acrylonitrile Butadiene Styrene (ABS) for its Use in Electrical Appliances
DOI:
https://doi.org/10.71107/awe3j621Keywords:
Kinetic studies, Thermal degradation, Acrylonitrile Butadiene Styrene, Thermogravimetric analysis, Isoconversional approachesAbstract
This work investigates the kinetic studies of thermal degradation of Acrylonitrile Butadiene Styrene (ABS) terpolymer. A complete thermal degradation profile of commercially available ABS plastic was recorded at multiple heating rates (5, 10, 15, and 20 °C min-1) from ambient temperature to 1000 °C under N2 (100 mL min-1) atmosphere. The maximum degradation (˃ 90%) of ABS polymer was observed from 360-524 °C. The effect of heating rates on the thermal stability of ABS polymer and derivative thermogravimetric (DTG) curves was also examined. Different isoconversional approaches such as Flynn-Wall-Ozawa (FWO) and Kissinger were used for the kinetic considerations of thermal data to calculate frequency factor (A), activation energy (Ea), and order of degradation reactions (n). The activation energy values evaluated by FWO and Kissinger methods were observed to be 107.36 kJ mol-1 and 111.28 kJ mol-1, respectively attributed to the preferred use of ABS polymer in electrical appliances.
Downloads
References
[1] Almeida Neto, G. R., Matheus, F. H., Gonçalves Beatrice, C. A., Leiva, D. R., & Pessan, L. A. (2022). Fundamentals and recent advances in polymer composites with hydride-forming metals for hydrogen storage applications. International Journal of Hydrogen Energy, 47(80), 34139–34164.
http://dx.doi.org/10.1016/j.ijhydene.2022.08.004 DOI: https://doi.org/10.1016/j.ijhydene.2022.08.004
[2] Alonso, A., Lázaro, M., Lázaro, D., & Alvear, D. (2023). Thermal characterization of acrylonitrile butadiene styrene-ABS obtained with different manufacturing processes. Journal of Thermal Analysis and Calorimetry, 148(20), 10557-10572. https://doi.org/10.1007/s10973-023-12258-2 DOI: https://doi.org/10.1007/s10973-023-12258-2
[3] Balart, R., Garcia-Sanoguera, D., Quiles-Carrillo, L., Montanes, N., & Torres-Giner, S. (2019). Kinetic analysis of the thermal degradation of recycled acrylonitrile-butadiene-styrene by non-isothermal thermogravimetry. Polymers, 11(2), 281.
https://doi.org/10.3390/polym11020281 DOI: https://doi.org/10.3390/polym11020281
[4] Bano, S., Ramzan, N., Iqbal, T., Mahmood, H., & Saeed, F. (2020). Study of thermal degradation behavior and kinetics of ABS/PC blend. Polish Journal of Chemical Technology, 22(3). http://dx.doi.org/10.2478/pjct-2020-0029 DOI: https://doi.org/10.2478/pjct-2020-0029
[5] Chrissafis, K., & Bikiaris, D. (2011). Can nanoparticles really enhance thermal stability of polymers? part I: An overview on thermal decomposition of addition polymers. Thermochimica Acta, 523(1-2), 1–24. https://doi.org/10.1016/j.tca.2011.06.010 DOI: https://doi.org/10.1016/j.tca.2011.06.010
[6] Christiyan, K. G. J., Chandrasekhar, U., & Venkateswarlu, K. (2016). A study on the influence of process parameters on the mechanical properties of 3D printed ABS composite. IOP Conference Series: Materials Science and Engineering, 114, 012109. http://dx.doi.org/10.1088/1757-899X/114/1/012109 DOI: https://doi.org/10.1088/1757-899X/114/1/012109
[7] Dong, X., Dong, M., Li, Y., Li, Z., Wang, W., Cao, N., Mahmoud, K. H., El-Bahy, S. M., El-Bahy, Z. M., Huang, M., & Guo, Z. (2022). Building blend from recycling acrylonitrile–butadiene–styrene and high impact-resistance polystyrene through dextro-glucose. Reactive and Functional Polymers, 175, 105287.
https://doi.org/10.1016/j.reactfunctpolym.2022.105287 DOI: https://doi.org/10.1016/j.reactfunctpolym.2022.105287
[8] Fonseca, L. P., Waldman, W. R., & De Paoli, M. A. (2021). ABS composites with cellulose fibers: Towards fiber-matrix adhesion without surface modification. Composites Part C: Open Access, 5, 100142.
https://doi.org/10.1016/j.jcomc.2021.100142 DOI: https://doi.org/10.1016/j.jcomc.2021.100142
[9] Freymond, C., Mackré-Delannoy, X., Guinault, A., Charbuillet, C., & Fayolle, B. (2022). Thermal oxidation of acrylonitrile-butadiene-styrene: Origin of the ductile/brittle transition. Polymer Degradation and Stability, 206, 110186. https://doi.org/10.1016/j.polymdegradstab.2022.110186 DOI: https://doi.org/10.1016/j.polymdegradstab.2022.110186
[10] Konarzewski, M., Durejko, T., Łazińska, M., Czerwińska, M., Prasuła, P., & Panowicz, R. (2022). Thermo-oxidative aging of the polyoxymethylene (POM), acrylonitrile–butadiene–styrene (ABS) and polycarbonate (PC) polymers – A comparative study. Journal of Polymer Research, 29(6). https://doi.org/10.1007/s10965-022-03065-8 DOI: https://doi.org/10.1007/s10965-022-03065-8
[11] Morni, A., Awang, H., & Hashima, N. (2022). Investigation of mechanical properties of acrylonitrile butadiene styrene and styrene butadiene styrene blends. Engrxiv 13(2). http://dx.doi.org/10.31224/2451 DOI: https://doi.org/10.31224/2451
[12] Munir, M. M., Kamil, A. I., & Burhanuddin, M. (2022). High-performance blow spun waste-acrylonitrile butadiene styrene (ABS) fibrous membrane for air filter. Journal of Materials Research and Technology, 18, 4564–4577. https://doi.org/10.1016/j.jmrt.2022.04.107 DOI: https://doi.org/10.1016/j.jmrt.2022.04.107
[13] Polli, H., Pontes, L., Araujo, A., Barros, J., & Fernandes, V. (2009). Degradation behavior and kinetic study of ABS polymer. Journal of thermal analysis and calorimetry, 95(1), 131-134. https://doi.org/10.1007/s10973-006-7781-1 DOI: https://doi.org/10.1007/s10973-006-7781-1
[14] Pour, R. H., Hassan, A., Soheilmoghaddam, M., & Bidsorkhi, H. C. (2016). Mechanical, thermal, and morphological properties of graphene reinforced polycarbonate/acrylonitrile butadiene styrene nanocomposites. Polymer Composites, 37(6), 1633-1640. https://doi.org/10.1002/pc.23335 DOI: https://doi.org/10.1002/pc.23335
[15] Pour, R. H., Soheilmoghaddam, M., Hassan, A., & Bourbigot, S. (2015). Flammability and thermal properties of polycarbonate/acrylonitrile-butadiene-styrene nanocomposites reinforced with multilayer graphene. Polymer Degradation and Stability, 120, 88-97. 12. https://doi.org/10.1016/j.polymdegradstab.2015.06.013 DOI: https://doi.org/10.1016/j.polymdegradstab.2015.06.013
[16] Singh, G., Singh, R., & Brar, G. S. (2022). On investigating the acrylonitrile butadiene styrene-melamine formaldehyde composite matrix for 4D applications. Encyclopedia of Materials: Plastics and Polymers, 350–360. https://doi.org/10.1016/b978-0-12-820352-1.00179-6 DOI: https://doi.org/10.1016/B978-0-12-820352-1.00179-6
[17] Tomaszewska, J., Sterzyński, T. and Walczak, D. (2021). Thermal Stability of Nanosilica-Modified Poly (vinyl chloride). Polymers, 13(13), 2057. https://doi.org/10.3390/polym13132057 DOI: https://doi.org/10.3390/polym13132057
[18] Vikneswaran, S. K., Nagarajan, P., Dinesh, S. K., Senthil Kumar, K. L., & Megalingam, A. (2022). Investigation of the tensile behaviour of polylactic acid, acrylonitrile butadiene styrene, and polyethylene terephthalate glycol materials. Materials Today: Proceedings, 66, 1093–1098. https://doi.org/10.1016/j.matpr.2022.04.897 DOI: https://doi.org/10.1016/j.matpr.2022.04.897
[19] Yang, S., Rafael Castilleja, J., Barrera, E. V., & Lozano, K. (2004). Thermal analysis of an acrylonitrile–butadiene–styrene/SWNT composite. Polymer Degradation and Stability, 83(3), 383–388. https://doi.org/10.1016/j.polymdegradstab.2003.08.002 DOI: https://doi.org/10.1016/j.polymdegradstab.2003.08.002
[20] Zhu, S.-E., Wang, F.-D., Liu, J.-J., Wang, L.-L., Wang, C., Yuen, A. C., Chen, T. B., Kabir, I. I., Yeoh, G. H., Lu, H.-D., & Yang, W. (2021). Bodipy coated on mxene nanosheets for improving mechanical and fire safety properties of ABS Resin. Composites Part B: Engineering, 223, 109130. https://doi.org/10.1016/j.compositesb.2021.109130 DOI: https://doi.org/10.1016/j.compositesb.2021.109130
Downloads
Published
Data Availability Statement
Data will be made available on request from corresponding author
License
Copyright (c) 2025 Rabia Sattar, Faiza Rani, Muhammad Amin, Nazia Shahana Abbas (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Most read articles by the same author(s)
- Uzma Akhtar , Muhammad Tallal, Rabia Sattar, Tehmeena Ishaq, Green Synthesis of Tin Oxide Nanoparticles from Plant Extracts: Characterization and Assessment of Photocatalytic, Antibacterial, and Antimicrobial Activities , Conclusions in Engineering: Articles in Press
- Jehanzaib Ahmed, Nazia Shahana Abbas, Muhammad Amin, Sara Hasan, Arooj Anwaar, Ahmad Shazad Saleemi, Nimra Adil, Amna Liaqat, Investigation of Thermal Stability of Bakelite by Isoconversional Thermal Analysis , Conclusions in Engineering: Articles in Press
- Ayesha Ashfaq, Muhammad Tallal, Amna Liaqat, Nadia Khan, Nouman Waheed, Muhammad Amin, Carbon Nitride Nanosheet-based Titanium Dioxide Hybrid Photocatalyst for Organic Effluent Degradation , Conclusions in Engineering: Articles in Press
- Qurat Ul Ain Yasin , Rabia Sattar, Muhammad Amin, Green Synthesis of Silver Oxide Nanoparticles using Zingiber officinale Extract: Catalytic and Antibacterial Potentials of 2-Phenyl Benzimidazole Derivatives , Conclusions in Engineering: Articles in Press
- Rida Iftikhar, Nazia Shahana Abbas, Muhammad Amin, Sara Hasan, Nimra Adil, Ahmad Shazad Saleemi, Arooj Anwaar, Facile Synthesis and Characterization of Silver Nanoparticles Based Sensors for Colorimetric Detection of Mercury Ions , Conclusions in Engineering: Articles in Press
- Nadia Khan, Qindeel Fatima, Amna Liaqat, Muhammad Amin, Extraction-Optimization of Hydrogel from Lallemantia Royleana Seeds Through Response Surface Methodology , Conclusions in Engineering: Articles in Press
Similar Articles
- Jehanzaib Ahmed, Nazia Shahana Abbas, Muhammad Amin, Sara Hasan, Arooj Anwaar, Ahmad Shazad Saleemi, Nimra Adil, Amna Liaqat, Investigation of Thermal Stability of Bakelite by Isoconversional Thermal Analysis , Conclusions in Engineering: Articles in Press
- Irfan Haider, Imtiaz Ahmad Khan, Fatima Kainat, Hassan Ali Akhter, Hassaan Khalid, Nawishta Jabeen, Ahmad Hussain, Theoretical analysis of power-law nanofluid across extended sheet with thermal-concentration slip and Soret/Dufour effect , Conclusions in Engineering: Vol. 1 No. 1 (2025): Conclusions in Engineering
- Muhammad Bilal, Yasir Mehmood, Tabinda Shaheen, Numerical investigation of Maxwell Hybrid Nanofluid flow with polystyrene oil as base fluid , Conclusions in Engineering: Vol. 1 No. 1 (2025): Conclusions in Engineering
- Mohamed Mosadag, Mohammed Ahmed Mohammed, Kamal Bashir , Amin Mubark Alamin, A Comparative Analysis for the Performance of LFW and ORL Databases in Facial Recognition , Conclusions in Engineering: Vol. 1 No. 1 (2025): Conclusions in Engineering
- Ayesha Ashfaq, Muhammad Tallal, Amna Liaqat, Nadia Khan, Nouman Waheed, Muhammad Amin, Carbon Nitride Nanosheet-based Titanium Dioxide Hybrid Photocatalyst for Organic Effluent Degradation , Conclusions in Engineering: Articles in Press
- Muhammad Bilal, Mubashir Mumtaz, Memoona Ashraf, Abdullah Nasir, Hanan Nasir, Engr. Musyab Raza, Improved Temperature Trend Forecasting in Major Pakistani Cities Using XGBoost and other Ensemble Machine Learning Models , Conclusions in Engineering: Articles in Press
- Muniba Yaseen Naz, Suleman Ahmad, Uroosa Hadi, Tayyaba Ghani, Robab Mehmood, Atta Ullah Shah, Mazhar Mehmood, Synthesis, Charecterization and Photocatlytic Application of the Grassy-Free Standing Titanium dioxide Nanotunes (Gfs –TiNts) , Conclusions in Engineering: Vol. 1 No. 1 (2025): Conclusions in Engineering
- Muniba Yaseen Naz, Fatima Jamshad, Tayyaba Ghani, Atta Ullah Shah, Uroosa Hadi, Mazhar Mehmood, Suleman Ahmad, Synthesis and Characterization of TiO2-MWCNTs Nanocomposit: A Novel route for the efficient degradation of N, N-Dimethylformamide , Conclusions in Engineering: Vol. 1 No. 1 (2025): Conclusions in Engineering
- Uzma Akhtar , Muhammad Tallal, Rabia Sattar, Tehmeena Ishaq, Green Synthesis of Tin Oxide Nanoparticles from Plant Extracts: Characterization and Assessment of Photocatalytic, Antibacterial, and Antimicrobial Activities , Conclusions in Engineering: Articles in Press
- Kamal Bashir, Mohamed Mosadag, A Novel Resampling Technique for Imbalanced Classification in Software Defect Prediction by a re-sampling method with filtering , Conclusions in Engineering: Vol. 1 No. 1 (2025): Conclusions in Engineering
You may also start an advanced similarity search for this article.