Engineering

Kinetic Analysis of Thermal Degradation of Acrylonitrile Butadiene Styrene (ABS) for its Use in Electrical Appliances

Authors

  • Rabia Sattar

    The University of Lahore, Sargodha campus, Pakistan
    Author
  • Faiza Rani

    The University of Lahore, Sargodha campus, Pakistan
    Author
  • Muhammad Amin

    The University of Lahore, Sargodha campus, Pakistan
    Author
  • Nazia Shahana Abbas

    Government Graduate College for Women, Chandni Chowk Sargodha, 40100 Sargodha, Pakistan
    Author

DOI:

https://doi.org/10.71107/awe3j621

Keywords:

Kinetic studies, Thermal degradation, Acrylonitrile Butadiene Styrene, Thermogravimetric analysis, Isoconversional approaches

Abstract

This work investigates the kinetic studies of thermal degradation of Acrylonitrile Butadiene Styrene (ABS) terpolymer. A complete thermal degradation profile of commercially available ABS plastic was recorded at multiple heating rates (5, 10, 15, and 20 °C min-1) from ambient temperature to 1000 °C under N2 (100 mL min-1) atmosphere. The maximum degradation (˃ 90%) of ABS polymer was observed from 360-524 °C. The effect of heating rates on the thermal stability of ABS polymer and derivative thermogravimetric (DTG) curves was also examined. Different isoconversional approaches such as Flynn-Wall-Ozawa (FWO) and Kissinger were used for the kinetic considerations of thermal data to calculate frequency factor (A), activation energy (Ea), and order of degradation reactions (n). The activation energy values evaluated by FWO and Kissinger methods were observed to be 107.36 kJ mol-1 and 111.28 kJ mol-1, respectively attributed to the preferred use of ABS polymer in electrical appliances.

Downloads

Download data is not yet available.

Author Biographies

  • Rabia Sattar, The University of Lahore, Sargodha campus, Pakistan

    Dr. Rabia is the assistant professor at University of Lahore, Pakistan

  • Faiza Rani, The University of Lahore, Sargodha campus, Pakistan

    Ms. Faiza Rani is the MPhil research student at UOL, Pakistan

  • Muhammad Amin, The University of Lahore, Sargodha campus, Pakistan

    Dr. Amin is Assistant Professor at UOL, Pakistan

  • Nazia Shahana Abbas, Government Graduate College for Women, Chandni Chowk Sargodha, 40100 Sargodha, Pakistan

    She is the Assistant Professor at Government Graduate College for Women, Chandni Chowk Sargodha, 40100 Sargodha, Pakistan

References

[1] Almeida Neto, G. R., Matheus, F. H., Gonçalves Beatrice, C. A., Leiva, D. R., & Pessan, L. A. (2022). Fundamentals and recent advances in polymer composites with hydride-forming metals for hydrogen storage applications. International Journal of Hydrogen Energy, 47(80), 34139–34164.

http://dx.doi.org/10.1016/j.ijhydene.2022.08.004 DOI: https://doi.org/10.1016/j.ijhydene.2022.08.004

[2] Alonso, A., Lázaro, M., Lázaro, D., & Alvear, D. (2023). Thermal characterization of acrylonitrile butadiene styrene-ABS obtained with different manufacturing processes. Journal of Thermal Analysis and Calorimetry, 148(20), 10557-10572. https://doi.org/10.1007/s10973-023-12258-2 DOI: https://doi.org/10.1007/s10973-023-12258-2

[3] Balart, R., Garcia-Sanoguera, D., Quiles-Carrillo, L., Montanes, N., & Torres-Giner, S. (2019). Kinetic analysis of the thermal degradation of recycled acrylonitrile-butadiene-styrene by non-isothermal thermogravimetry. Polymers, 11(2), 281.

https://doi.org/10.3390/polym11020281 DOI: https://doi.org/10.3390/polym11020281

[4] Bano, S., Ramzan, N., Iqbal, T., Mahmood, H., & Saeed, F. (2020). Study of thermal degradation behavior and kinetics of ABS/PC blend. Polish Journal of Chemical Technology, 22(3). http://dx.doi.org/10.2478/pjct-2020-0029 DOI: https://doi.org/10.2478/pjct-2020-0029

[5] Chrissafis, K., & Bikiaris, D. (2011). Can nanoparticles really enhance thermal stability of polymers? part I: An overview on thermal decomposition of addition polymers. Thermochimica Acta, 523(1-2), 1–24. https://doi.org/10.1016/j.tca.2011.06.010 DOI: https://doi.org/10.1016/j.tca.2011.06.010

[6] Christiyan, K. G. J., Chandrasekhar, U., & Venkateswarlu, K. (2016). A study on the influence of process parameters on the mechanical properties of 3D printed ABS composite. IOP Conference Series: Materials Science and Engineering, 114, 012109. http://dx.doi.org/10.1088/1757-899X/114/1/012109 DOI: https://doi.org/10.1088/1757-899X/114/1/012109

[7] Dong, X., Dong, M., Li, Y., Li, Z., Wang, W., Cao, N., Mahmoud, K. H., El-Bahy, S. M., El-Bahy, Z. M., Huang, M., & Guo, Z. (2022). Building blend from recycling acrylonitrile–butadiene–styrene and high impact-resistance polystyrene through dextro-glucose. Reactive and Functional Polymers, 175, 105287.

https://doi.org/10.1016/j.reactfunctpolym.2022.105287 DOI: https://doi.org/10.1016/j.reactfunctpolym.2022.105287

[8] Fonseca, L. P., Waldman, W. R., & De Paoli, M. A. (2021). ABS composites with cellulose fibers: Towards fiber-matrix adhesion without surface modification. Composites Part C: Open Access, 5, 100142.

https://doi.org/10.1016/j.jcomc.2021.100142 DOI: https://doi.org/10.1016/j.jcomc.2021.100142

[9] Freymond, C., Mackré-Delannoy, X., Guinault, A., Charbuillet, C., & Fayolle, B. (2022). Thermal oxidation of acrylonitrile-butadiene-styrene: Origin of the ductile/brittle transition. Polymer Degradation and Stability, 206, 110186. https://doi.org/10.1016/j.polymdegradstab.2022.110186 DOI: https://doi.org/10.1016/j.polymdegradstab.2022.110186

[10] Konarzewski, M., Durejko, T., Łazińska, M., Czerwińska, M., Prasuła, P., & Panowicz, R. (2022). Thermo-oxidative aging of the polyoxymethylene (POM), acrylonitrile–butadiene–styrene (ABS) and polycarbonate (PC) polymers – A comparative study. Journal of Polymer Research, 29(6). https://doi.org/10.1007/s10965-022-03065-8 DOI: https://doi.org/10.1007/s10965-022-03065-8

[11] Morni, A., Awang, H., & Hashima, N. (2022). Investigation of mechanical properties of acrylonitrile butadiene styrene and styrene butadiene styrene blends. Engrxiv 13(2). http://dx.doi.org/10.31224/2451 DOI: https://doi.org/10.31224/2451

[12] Munir, M. M., Kamil, A. I., & Burhanuddin, M. (2022). High-performance blow spun waste-acrylonitrile butadiene styrene (ABS) fibrous membrane for air filter. Journal of Materials Research and Technology, 18, 4564–4577. https://doi.org/10.1016/j.jmrt.2022.04.107 DOI: https://doi.org/10.1016/j.jmrt.2022.04.107

[13] Polli, H., Pontes, L., Araujo, A., Barros, J., & Fernandes, V. (2009). Degradation behavior and kinetic study of ABS polymer. Journal of thermal analysis and calorimetry, 95(1), 131-134. https://doi.org/10.1007/s10973-006-7781-1 DOI: https://doi.org/10.1007/s10973-006-7781-1

[14] Pour, R. H., Hassan, A., Soheilmoghaddam, M., & Bidsorkhi, H. C. (2016). Mechanical, thermal, and morphological properties of graphene reinforced polycarbonate/acrylonitrile butadiene styrene nanocomposites. Polymer Composites, 37(6), 1633-1640. https://doi.org/10.1002/pc.23335 DOI: https://doi.org/10.1002/pc.23335

[15] Pour, R. H., Soheilmoghaddam, M., Hassan, A., & Bourbigot, S. (2015). Flammability and thermal properties of polycarbonate/acrylonitrile-butadiene-styrene nanocomposites reinforced with multilayer graphene. Polymer Degradation and Stability, 120, 88-97. 12. https://doi.org/10.1016/j.polymdegradstab.2015.06.013 DOI: https://doi.org/10.1016/j.polymdegradstab.2015.06.013

[16] Singh, G., Singh, R., & Brar, G. S. (2022). On investigating the acrylonitrile butadiene styrene-melamine formaldehyde composite matrix for 4D applications. Encyclopedia of Materials: Plastics and Polymers, 350–360. https://doi.org/10.1016/b978-0-12-820352-1.00179-6 DOI: https://doi.org/10.1016/B978-0-12-820352-1.00179-6

[17] Tomaszewska, J., Sterzyński, T. and Walczak, D. (2021). Thermal Stability of Nanosilica-Modified Poly (vinyl chloride). Polymers, 13(13), 2057. https://doi.org/10.3390/polym13132057 DOI: https://doi.org/10.3390/polym13132057

[18] Vikneswaran, S. K., Nagarajan, P., Dinesh, S. K., Senthil Kumar, K. L., & Megalingam, A. (2022). Investigation of the tensile behaviour of polylactic acid, acrylonitrile butadiene styrene, and polyethylene terephthalate glycol materials. Materials Today: Proceedings, 66, 1093–1098. https://doi.org/10.1016/j.matpr.2022.04.897 DOI: https://doi.org/10.1016/j.matpr.2022.04.897

[19] Yang, S., Rafael Castilleja, J., Barrera, E. V., & Lozano, K. (2004). Thermal analysis of an acrylonitrile–butadiene–styrene/SWNT composite. Polymer Degradation and Stability, 83(3), 383–388. https://doi.org/10.1016/j.polymdegradstab.2003.08.002 DOI: https://doi.org/10.1016/j.polymdegradstab.2003.08.002

[20] Zhu, S.-E., Wang, F.-D., Liu, J.-J., Wang, L.-L., Wang, C., Yuen, A. C., Chen, T. B., Kabir, I. I., Yeoh, G. H., Lu, H.-D., & Yang, W. (2021). Bodipy coated on mxene nanosheets for improving mechanical and fire safety properties of ABS Resin. Composites Part B: Engineering, 223, 109130. https://doi.org/10.1016/j.compositesb.2021.109130 DOI: https://doi.org/10.1016/j.compositesb.2021.109130

Downloads

Published

2025-04-30

Data Availability Statement

Data will be made available on request from corresponding author

Issue

Section

Articles

Categories

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.