Facile Synthesis and Characterization of Silver Nanoparticles Based Sensors for Colorimetric Detection of Mercury Ions
DOI:
https://doi.org/10.71107/xkzp1272Keywords:
Protocatechuic acid, Heavy metals, Mercury, Silver nanoparticlesAbstract
Metals contamination is one the severe form of water pollutions. Mercury contamination is most hazardous among them and poses great threat to environment. It is need of hour to develop analytical methods for detection of even trace levels of mercury concentration in water sources. Highly sensitive and discriminatory colorimetric sensing platforms for Hg2+ ions are recorded for this purpose. Herein, we report the fabrication of functionalized silver nanoparticles (AgNPs) with protocatechuic acid (PCA). UV-Vis spectrophotometry confirmed the development of PCA-AgNPs. Transmission electron microscopy (TEM) was used to observe the shape and size distribution of PCA mediated AgNPs. The average diameter size was observed to be 11 nm and almost spherical in shape. Powder X-Ray diffractometry proved face centered cubic crystal of Ag. These PCA-AgNPs have been used for metal sensing. When Hg2+ solution was mixed with PCA-AgNPs solution, there was an apparent color transition from light brown to almost colorless. UV-Vis spectrophotometric measurements have confirmed this color transition. At 395 nm there was substantial decrease in the absorption band and new peak emerged at 550 nm. PCA-AgNPs exhibited reasonable sensitivity for Hg2+ in the concentration range of 1×10-7 to 5×10-5 M. This sensor was also tested in presence of many other metals to check the competing effect of other metals, but it showed no color change thus suggesting high sensitivity for mercury ions. This method also showed satisfactory percentage recoveries with different water samples.
Downloads
References
[1] Hamidi, M., Azadi, A., & Rafiei, P. (2008). Hydrogel nanoparticles in drug delivery. Advanced drug delivery reviews, 60(15), 1638-1649. https://doi.org/10.1016/j.addr.2008.08.002. DOI: https://doi.org/10.1016/j.addr.2008.08.002
[2] Gunalan, S., Sivaraj, R., & Rajendran, V. (2012). Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Progress in Natural Science: Materials International, 22(6), 693-700. https://doi.org/10.1016/j.pnsc.2012.11.015 DOI: https://doi.org/10.1016/j.pnsc.2012.11.015
[3] Choudhary, M. K., Garg, S., Kaur, A., Kataria, J., & Sharma, S. (2020). Green biomimetic silver nanoparticles as invigorated colorimetric probe for Hg2+ ions: A cleaner approach towards recognition of heavy metal ions in aqueous media. Materials Chemistry and Physics, 240, 122164. https://doi.org/10.1016/j.matchemphys.2019.122164 DOI: https://doi.org/10.1016/j.matchemphys.2019.122164
[4] Krutyakov, Y. A., Kudrinskiy, A. A., Olenin, A. Y., & Lisichkin, G. V. (2008). Synthesis and properties of silver nanoparticles: advances and prospects. Russian Chemical Reviews, 77(3), 233. DOI 10.1070/RC2008v077n03ABEH003751 DOI: https://doi.org/10.1070/RC2008v077n03ABEH003751
[5] Monteiro, D. R., Gorup, L. F., Takamiya, A. S., Ruvollo-Filho, A. C., de Camargo, E. R., & Barbosa, D. B. (2009). The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. International journal of antimicrobial agents, 34(2), 103-110. doi: 10.1016/j.ijantimicag.2009.01.017. DOI: https://doi.org/10.1016/j.ijantimicag.2009.01.017
[6] Xu, X., Yang, S., Wang, Y., & Qian, K. (2022). Nanomaterial-based sensors and strategies for heavy metal ion detection. Green Analytical Chemistry, 2, 100020. https://doi.org/10.1016/j.greeac.2022.100020 DOI: https://doi.org/10.1016/j.greeac.2022.100020
[7] Qing, W., Zhao, M., Kou, C., Lu, M., & Wang, Y. (2018). Functionalization of silver nanoparticles with mPEGylated luteolin for selective visual detection of Hg 2+ in water sample. RSC advances, 8(51), 28843-28846. https://doi.org/10.1039/C8RA05243C DOI: https://doi.org/10.1039/C8RA05243C
[8] Santhosh, A. S., Sandeep, S., & Swamy, N. K. (2019). Green synthesis of nano silver from euphorbia geniculata leaf extract: Investigations on catalytic degradation of methyl orange dye and optical sensing of Hg2+. Surfaces and Interfaces, 14, 50-54. https://doi.org/10.1016/j.surfin.2018.11.004. DOI: https://doi.org/10.1016/j.surfin.2018.11.004
[9] Fan, Y., Long, Y. F., & Li, Y. F. (2009). A sensitive resonance light scattering spectrometry of trace Hg2+ with sulfur ion modified gold nanoparticles. Analytica chimica acta, 653(2), 207-211. https://doi.org/10.1016/j.aca.2009.09.017 DOI: https://doi.org/10.1016/j.aca.2009.09.017
[10] Bhattacharjee, Y., Chatterjee, D., & Chakraborty, A. (2018). Mercaptobenzoheterocyclic compounds functionalized silver nanoparticle, an ultrasensitive colorimetric probe for Hg (II) detection in water with picomolar precision: A correlation between sensitivity and binding affinity. Sensors and Actuators B: Chemical, 255, 210-216. https://doi.org/10.1016/j.snb.2017.08.066 DOI: https://doi.org/10.1016/j.snb.2017.08.066
[11] Kim, D., Jeong, S., & Moon, J. (2006). Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection. Nanotechnology, 17(16), 4019. doi: 10.1088/0957-4484/17/16/004 DOI: https://doi.org/10.1088/0957-4484/17/16/004
[12] Durán, N., Marcato, P. D., Durán, M., Yadav, A., Gade, A., & Rai, M. (2011). Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants. Applied microbiology and biotechnology, 90, 1609-1624. doi: 10.1007/s00253-011-3249-8. DOI: https://doi.org/10.1007/s00253-011-3249-8
[13] Botes, M., & Eugene Cloete, T. (2010). The potential of nanofibers and nanobiocides in water purification. Critical reviews in microbiology, 36(1), 68-81. DOI: 10.3109/10408410903397332. DOI: https://doi.org/10.3109/10408410903397332
[14] Aromal, S. A., & Philip, D. (2012). Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size-dependent catalytic activity. Spectrochimica acta Part A: molecular and biomolecular spectroscopy, 97, 1-5. doi: 10.1016/j.saa.2012.05.083. DOI: https://doi.org/10.1016/j.saa.2012.05.083
[15] Gericke, M., & Pinches, A. (2006). Biological synthesis of metal nanoparticles. Hydrometallurgy, 83(1-4), 132-140. https://doi.org/10.1016/j.hydromet.2006.03.019. DOI: https://doi.org/10.1016/j.hydromet.2006.03.019
[16] Ying, S., Guan, Z., Ofoegbu, P. C., Clubb, P., Rico, C., He, F., & Hong, J. (2022). Green synthesis of nanoparticles: Current developments and limitations. Environmental Technology & Innovation, 26, 102336. https://doi.org/10.1016/j.eti.2022.102336 DOI: https://doi.org/10.1016/j.eti.2022.102336
[17] Liu, C. L., Wang, J. M., Chu, C. Y., Cheng, M. T., & Tseng, T. H. (2002). In vivo protective effect of protocatechuic acid on tert-butyl hydroperoxide-induced rat hepatotoxicity. Food and Chemical Toxicology, 40(5), 635-641. doi:10.1016/s0278-6915(02)00002-9. DOI: https://doi.org/10.1016/S0278-6915(02)00002-9
[18] Babich, H., Sedletcaia, A., & Kenigsberg, B. (2002). In vitro cytotoxicity of protocatechuic acid to cultured human cells from oral tissue: involvement in oxidative stress. Pharmacology & toxicology, 91(5), 245-253. doi:10.1034/j.1600-0773.2002.910505.x. DOI: https://doi.org/10.1034/j.1600-0773.2002.910505.x
[19] Mallavadhani, U. V., & Mahapatra, A. (2005). A new aurone and two rare metabolites from the leaves of Diospyros melanoxylon. Natural Product Research, 19(1), 91-97. doi:10.1080/14786410410001704705. DOI: https://doi.org/10.1080/14786410410001704705
[20] Kosmala, A., Wright, R., Zhang, Q., & Kirby, P. (2011). Synthesis of silver nano particles and fabrication of aqueous Ag inks for inkjet printing. Materials Chemistry and Physics, 129(3), 1075-1080. https://doi.org/10.1016/j.matchemphys.2011.05.064 DOI: https://doi.org/10.1016/j.matchemphys.2011.05.064
[21] Manikandan, D. B., Sridhar, A., Sekar, R. K., Perumalsamy, B., Veeran, S., Arumugam, M., ... & Ramasamy, T. (2021). Green fabrication, characterization of silver nanoparticles using aqueous leaf extract of Ocimum americanum (Hoary Basil) and investigation of its in vitro antibacterial, antioxidant, anticancer and photocatalytic reduction. Journal of Environmental Chemical Engineering, 9(1), 104845. https://doi.org/10.1016/j.jece.2020.104845 DOI: https://doi.org/10.1016/j.jece.2020.104845
[22] Kedi, P. B. E., Meva, F. E. A., Kotsedi, L., Nguemfo, E. L., Zangueu, C. B., Ntoumba, A. A., ... & Maaza, M. (2018). Eco-friendly synthesis, characterization, in vitro and in vivo anti-inflammatory activity of silver nanoparticle-mediated Selaginella myosurus aqueous extract. International journal of nanomedicine, 8537-8548. doi: 10.2147/IJN.S174530. DOI: https://doi.org/10.2147/IJN.S174530
[23] Ansar, S., Tabassum, H., Aladwan, N. S., Naiman Ali, M., Almaarik, B., AlMahrouqi, S., ... & Alsubki, R. (2020). Eco friendly silver nanoparticles synthesis by Brassica oleracea and its antibacterial, anticancer and antioxidant properties. Scientific Reports, 10(1), 18564. https://doi.org/10.1038/s41598-020-74371-8. DOI: https://doi.org/10.1038/s41598-020-74371-8
[24] Rafique, M., Sadaf, I., Rafique, M. S., & Tahir, M. B. (2017). A review on green synthesis of silver nanoparticles and their applications. Artificial cells, nanomedicine, and biotechnology, 45(7), 1272-1291. DOI: 10.1080/21691401.2016.1241792. DOI: https://doi.org/10.1080/21691401.2016.1241792
[25] Syed, A., Saraswati, S., Kundu, G. C., & Ahmad, A. (2013). Biological synthesis of silver nanoparticles using the fungus Humicola sp. and evaluation of their cytoxicity using normal and cancer cell lines. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 114, 144-147. https://doi.org/10.1016/j.saa.2013.05.030 DOI: https://doi.org/10.1016/j.saa.2013.05.030
[26] Singh, D., Rathod, V., Ninganagouda, S., Hiremath, J., Singh, A. K., & Mathew, J. (2014). Optimization and characterization of silver nanoparticle by endophytic fungi Penicillium sp. isolated from Curcuma longa (turmeric) and application studies against MDR E. coli and S. aureus. Bioinorganic chemistry and applications, 2014(1), 408021. doi: 10.1155/2014/408021. DOI: https://doi.org/10.1155/2014/408021
[27] Gurunathan, S., Kalishwaralal, K., Vaidyanathan, R., Venkataraman, D., Pandian, S. R. K., Muniyandi, J., ... & Eom, S. H. (2009). Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids and Surfaces B: Biointerfaces, 74(1), 328-335.https://doi.org/10.1016/j.colsurfb.2009.07.048 DOI: https://doi.org/10.1016/j.colsurfb.2009.07.048
[28] Wang, C., Kim, Y. J., Singh, P., Mathiyalagan, R., Jin, Y., & Yang, D. C. (2016). Green synthesis of silver nanoparticles by Bacillus methylotrophicus, and their antimicrobial activity. Artificial cells, nanomedicine, and biotechnology, 44(4), 1127-1132. https://doi.org/10.3109/21691401.2015.1011805 DOI: https://doi.org/10.3109/21691401.2015.1011805
[29] Bhuvaneswari, R., Xavier, R. J., & Arumugam, M. (2017). Facile synthesis of multifunctional silver nanoparticles using mangrove plant Excoecaria agallocha L. for its antibacterial, antioxidant and cytotoxic effects. Journal of parasitic diseases, 41(1), 180-187. doi: 10.1007/s12639-016-0773-6. DOI: https://doi.org/10.1007/s12639-016-0773-6
[30] Suresh, U., Murugan, K., Benelli, G., Nicoletti, M., Barnard, D. R., Panneerselvam, C., ... & Chandramohan, B. (2015). Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitology research, 114, 1551-1562. doi: 10.1007/s00436-015-4339-9. DOI: https://doi.org/10.1007/s00436-015-4339-9
Downloads
Published
Data Availability Statement
Data will be made available on request from corresponding author
License
Copyright (c) 2025 Rida Iftikhar, Nazia Shahana Abbas, Muhammad Amin, Sara Hasan, Nimra Adil, Ahmad Shazad Saleemi, Arooj Anwaar (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Most read articles by the same author(s)
- Nadia Khan, Qindeel Fatima, Amna Liaqat, Muhammad Amin, Extraction-Optimization of Hydrogel from Lallemantia Royleana Seeds Through Response Surface Methodology , Conclusions in Engineering: Articles in Press
- Jehanzaib Ahmed, Nazia Shahana Abbas, Muhammad Amin, Sara Hasan, Arooj Anwaar, Ahmad Shazad Saleemi, Nimra Adil, Amna Liaqat, Investigation of Thermal Stability of Bakelite by Isoconversional Thermal Analysis , Conclusions in Engineering: Articles in Press
- Qurat Ul Ain Yasin , Rabia Sattar, Muhammad Amin, Green Synthesis of Silver Oxide Nanoparticles using Zingiber officinale Extract: Catalytic and Antibacterial Potentials of 2-Phenyl Benzimidazole Derivatives , Conclusions in Engineering: Articles in Press
- Ayesha Ashfaq, Muhammad Tallal, Amna Liaqat, Nadia Khan, Nouman Waheed, Muhammad Amin, Carbon Nitride Nanosheet-based Titanium Dioxide Hybrid Photocatalyst for Organic Effluent Degradation , Conclusions in Engineering: Articles in Press
- Rabia Sattar, Faiza Rani, Muhammad Amin, Nazia Shahana Abbas, Kinetic Analysis of Thermal Degradation of Acrylonitrile Butadiene Styrene (ABS) for its Use in Electrical Appliances , Conclusions in Engineering: Articles in Press
Similar Articles
- Qurat Ul Ain Yasin , Rabia Sattar, Muhammad Amin, Green Synthesis of Silver Oxide Nanoparticles using Zingiber officinale Extract: Catalytic and Antibacterial Potentials of 2-Phenyl Benzimidazole Derivatives , Conclusions in Engineering: Articles in Press
- Uzma Akhtar , Muhammad Tallal, Rabia Sattar, Tehmeena Ishaq, Green Synthesis of Tin Oxide Nanoparticles from Plant Extracts: Characterization and Assessment of Photocatalytic, Antibacterial, and Antimicrobial Activities , Conclusions in Engineering: Articles in Press
- Ayesha Saddiqa, Yasir Mehmood, Ammar Alsinai, Muhammad Bilal, Oblique Stagnation Point Flow of Maxwell Trihybrid Nano-Material Over a Stretching Cylinder , Conclusions in Engineering: Articles in Press
- Muniba Yaseen Naz, Fatima Jamshad, Tayyaba Ghani, Atta Ullah Shah, Uroosa Hadi, Mazhar Mehmood, Suleman Ahmad, Synthesis and Characterization of TiO2-MWCNTs Nanocomposit: A Novel route for the efficient degradation of N, N-Dimethylformamide , Conclusions in Engineering: Vol. 1 No. 1 (2025): Conclusions in Engineering
- Muhammad Bilal, Yasir Mehmood, Tabinda Shaheen, Numerical investigation of Maxwell Hybrid Nanofluid flow with polystyrene oil as base fluid , Conclusions in Engineering: Vol. 1 No. 1 (2025): Conclusions in Engineering
You may also start an advanced similarity search for this article.