Engineering

Facile Synthesis and Characterization of Silver Nanoparticles Based Sensors for Colorimetric Detection of Mercury Ions

Authors

  • Rida Iftikhar

    University of Manchester, Manchester, England
    Author
  • Nazia Shahana Abbas

    , Government Graduate College for Women, Chandni Chowk, Sargodha 40100, Pakistan
    Author
  • Muhammad Amin

    The University of Lahore, Sargodha campus, Pakistan
    Author
  • Sara Hasan

    Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
    Author
  • Nimra Adil

    The University of Lahore, Sargodha campus, Pakistan
    Author
  • Ahmad Shazad Saleemi

    The University of Lahore, Sargodha campus, Pakistan
    Author
  • Arooj Anwaar

    Department of Chemistry, The University of Lahore, Sargodha Campus, Sargodha, 40100, Pakistan
    Author

DOI:

https://doi.org/10.71107/xkzp1272

Keywords:

Protocatechuic acid, Heavy metals, Mercury, Silver nanoparticles

Abstract

Metals contamination is one the severe form of water pollutions. Mercury contamination is most hazardous among them and poses great threat to environment. It is need of hour to develop analytical methods for detection of even trace levels of mercury concentration in water sources. Highly sensitive and discriminatory colorimetric sensing platforms for Hg2+ ions are recorded for this purpose. Herein, we report the fabrication of functionalized silver nanoparticles (AgNPs) with protocatechuic acid (PCA). UV-Vis spectrophotometry confirmed the development of PCA-AgNPs. Transmission electron microscopy (TEM) was used to observe the shape and size distribution of PCA mediated AgNPs. The average diameter size was observed to be 11 nm and almost spherical in shape. Powder X-Ray diffractometry proved face centered cubic crystal of Ag. These PCA-AgNPs have been used for metal sensing. When Hg2+ solution was mixed with PCA-AgNPs solution, there was an apparent color transition from light brown to almost colorless. UV-Vis spectrophotometric measurements have confirmed this color transition. At 395 nm there was substantial decrease in the absorption band and new peak emerged at 550 nm. PCA-AgNPs exhibited reasonable sensitivity for Hg2+ in the concentration range of 1×10-7 to 5×10-5 M. This sensor was also tested in presence of many other metals to check the competing effect of other metals, but it showed no color change thus suggesting high sensitivity for mercury ions. This method also showed satisfactory percentage recoveries with different water samples.

Downloads

Download data is not yet available.

Author Biographies

  • Rida Iftikhar, University of Manchester, Manchester, England

    PhD student at University of Manchester, Manchester, England

  • Nazia Shahana Abbas, , Government Graduate College for Women, Chandni Chowk, Sargodha 40100, Pakistan

    Assistant Professor at 

    , Government Graduate College for Women, Chandni Chowk, Sargodha 40100, Pakistan

  • Muhammad Amin, The University of Lahore, Sargodha campus, Pakistan

    Assistant Professor at UOL, Pakistan

  • Sara Hasan, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia

    PhD student at Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia

  • Nimra Adil, The University of Lahore, Sargodha campus, Pakistan

    MPhil student at UOL, Pakistan

  • Ahmad Shazad Saleemi, The University of Lahore, Sargodha campus, Pakistan

    MPhil student at UOL, Pakistan

  • Arooj Anwaar, Department of Chemistry, The University of Lahore, Sargodha Campus, Sargodha, 40100, Pakistan

    Department of Chemistry, The University of Lahore, Sargodha Campus, Sargodha, 40100, Pakistan

References

[1] Hamidi, M., Azadi, A., & Rafiei, P. (2008). Hydrogel nanoparticles in drug delivery. Advanced drug delivery reviews, 60(15), 1638-1649. https://doi.org/10.1016/j.addr.2008.08.002. DOI: https://doi.org/10.1016/j.addr.2008.08.002

[2] Gunalan, S., Sivaraj, R., & Rajendran, V. (2012). Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Progress in Natural Science: Materials International, 22(6), 693-700. https://doi.org/10.1016/j.pnsc.2012.11.015 DOI: https://doi.org/10.1016/j.pnsc.2012.11.015

[3] Choudhary, M. K., Garg, S., Kaur, A., Kataria, J., & Sharma, S. (2020). Green biomimetic silver nanoparticles as invigorated colorimetric probe for Hg2+ ions: A cleaner approach towards recognition of heavy metal ions in aqueous media. Materials Chemistry and Physics, 240, 122164. https://doi.org/10.1016/j.matchemphys.2019.122164 DOI: https://doi.org/10.1016/j.matchemphys.2019.122164

[4] Krutyakov, Y. A., Kudrinskiy, A. A., Olenin, A. Y., & Lisichkin, G. V. (2008). Synthesis and properties of silver nanoparticles: advances and prospects. Russian Chemical Reviews, 77(3), 233. DOI 10.1070/RC2008v077n03ABEH003751 DOI: https://doi.org/10.1070/RC2008v077n03ABEH003751

[5] Monteiro, D. R., Gorup, L. F., Takamiya, A. S., Ruvollo-Filho, A. C., de Camargo, E. R., & Barbosa, D. B. (2009). The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. International journal of antimicrobial agents, 34(2), 103-110. doi: 10.1016/j.ijantimicag.2009.01.017. DOI: https://doi.org/10.1016/j.ijantimicag.2009.01.017

[6] Xu, X., Yang, S., Wang, Y., & Qian, K. (2022). Nanomaterial-based sensors and strategies for heavy metal ion detection. Green Analytical Chemistry, 2, 100020. https://doi.org/10.1016/j.greeac.2022.100020 DOI: https://doi.org/10.1016/j.greeac.2022.100020

[7] Qing, W., Zhao, M., Kou, C., Lu, M., & Wang, Y. (2018). Functionalization of silver nanoparticles with mPEGylated luteolin for selective visual detection of Hg 2+ in water sample. RSC advances, 8(51), 28843-28846. https://doi.org/10.1039/C8RA05243C DOI: https://doi.org/10.1039/C8RA05243C

[8] Santhosh, A. S., Sandeep, S., & Swamy, N. K. (2019). Green synthesis of nano silver from euphorbia geniculata leaf extract: Investigations on catalytic degradation of methyl orange dye and optical sensing of Hg2+. Surfaces and Interfaces, 14, 50-54. https://doi.org/10.1016/j.surfin.2018.11.004. DOI: https://doi.org/10.1016/j.surfin.2018.11.004

[9] Fan, Y., Long, Y. F., & Li, Y. F. (2009). A sensitive resonance light scattering spectrometry of trace Hg2+ with sulfur ion modified gold nanoparticles. Analytica chimica acta, 653(2), 207-211. https://doi.org/10.1016/j.aca.2009.09.017 DOI: https://doi.org/10.1016/j.aca.2009.09.017

[10] Bhattacharjee, Y., Chatterjee, D., & Chakraborty, A. (2018). Mercaptobenzoheterocyclic compounds functionalized silver nanoparticle, an ultrasensitive colorimetric probe for Hg (II) detection in water with picomolar precision: A correlation between sensitivity and binding affinity. Sensors and Actuators B: Chemical, 255, 210-216. https://doi.org/10.1016/j.snb.2017.08.066 DOI: https://doi.org/10.1016/j.snb.2017.08.066

[11] Kim, D., Jeong, S., & Moon, J. (2006). Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection. Nanotechnology, 17(16), 4019. doi: 10.1088/0957-4484/17/16/004 DOI: https://doi.org/10.1088/0957-4484/17/16/004

[12] Durán, N., Marcato, P. D., Durán, M., Yadav, A., Gade, A., & Rai, M. (2011). Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants. Applied microbiology and biotechnology, 90, 1609-1624. doi: 10.1007/s00253-011-3249-8. DOI: https://doi.org/10.1007/s00253-011-3249-8

[13] Botes, M., & Eugene Cloete, T. (2010). The potential of nanofibers and nanobiocides in water purification. Critical reviews in microbiology, 36(1), 68-81. DOI: 10.3109/10408410903397332. DOI: https://doi.org/10.3109/10408410903397332

[14] Aromal, S. A., & Philip, D. (2012). Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size-dependent catalytic activity. Spectrochimica acta Part A: molecular and biomolecular spectroscopy, 97, 1-5. doi: 10.1016/j.saa.2012.05.083. DOI: https://doi.org/10.1016/j.saa.2012.05.083

[15] Gericke, M., & Pinches, A. (2006). Biological synthesis of metal nanoparticles. Hydrometallurgy, 83(1-4), 132-140. https://doi.org/10.1016/j.hydromet.2006.03.019. DOI: https://doi.org/10.1016/j.hydromet.2006.03.019

[16] Ying, S., Guan, Z., Ofoegbu, P. C., Clubb, P., Rico, C., He, F., & Hong, J. (2022). Green synthesis of nanoparticles: Current developments and limitations. Environmental Technology & Innovation, 26, 102336. https://doi.org/10.1016/j.eti.2022.102336 DOI: https://doi.org/10.1016/j.eti.2022.102336

[17] Liu, C. L., Wang, J. M., Chu, C. Y., Cheng, M. T., & Tseng, T. H. (2002). In vivo protective effect of protocatechuic acid on tert-butyl hydroperoxide-induced rat hepatotoxicity. Food and Chemical Toxicology, 40(5), 635-641. doi:10.1016/s0278-6915(02)00002-9. DOI: https://doi.org/10.1016/S0278-6915(02)00002-9

[18] Babich, H., Sedletcaia, A., & Kenigsberg, B. (2002). In vitro cytotoxicity of protocatechuic acid to cultured human cells from oral tissue: involvement in oxidative stress. Pharmacology & toxicology, 91(5), 245-253. doi:10.1034/j.1600-0773.2002.910505.x. DOI: https://doi.org/10.1034/j.1600-0773.2002.910505.x

[19] Mallavadhani, U. V., & Mahapatra, A. (2005). A new aurone and two rare metabolites from the leaves of Diospyros melanoxylon. Natural Product Research, 19(1), 91-97. doi:10.1080/14786410410001704705. DOI: https://doi.org/10.1080/14786410410001704705

[20] Kosmala, A., Wright, R., Zhang, Q., & Kirby, P. (2011). Synthesis of silver nano particles and fabrication of aqueous Ag inks for inkjet printing. Materials Chemistry and Physics, 129(3), 1075-1080. https://doi.org/10.1016/j.matchemphys.2011.05.064 DOI: https://doi.org/10.1016/j.matchemphys.2011.05.064

[21] Manikandan, D. B., Sridhar, A., Sekar, R. K., Perumalsamy, B., Veeran, S., Arumugam, M., ... & Ramasamy, T. (2021). Green fabrication, characterization of silver nanoparticles using aqueous leaf extract of Ocimum americanum (Hoary Basil) and investigation of its in vitro antibacterial, antioxidant, anticancer and photocatalytic reduction. Journal of Environmental Chemical Engineering, 9(1), 104845. https://doi.org/10.1016/j.jece.2020.104845 DOI: https://doi.org/10.1016/j.jece.2020.104845

[22] Kedi, P. B. E., Meva, F. E. A., Kotsedi, L., Nguemfo, E. L., Zangueu, C. B., Ntoumba, A. A., ... & Maaza, M. (2018). Eco-friendly synthesis, characterization, in vitro and in vivo anti-inflammatory activity of silver nanoparticle-mediated Selaginella myosurus aqueous extract. International journal of nanomedicine, 8537-8548. doi: 10.2147/IJN.S174530. DOI: https://doi.org/10.2147/IJN.S174530

[23] Ansar, S., Tabassum, H., Aladwan, N. S., Naiman Ali, M., Almaarik, B., AlMahrouqi, S., ... & Alsubki, R. (2020). Eco friendly silver nanoparticles synthesis by Brassica oleracea and its antibacterial, anticancer and antioxidant properties. Scientific Reports, 10(1), 18564. https://doi.org/10.1038/s41598-020-74371-8. DOI: https://doi.org/10.1038/s41598-020-74371-8

[24] Rafique, M., Sadaf, I., Rafique, M. S., & Tahir, M. B. (2017). A review on green synthesis of silver nanoparticles and their applications. Artificial cells, nanomedicine, and biotechnology, 45(7), 1272-1291. DOI: 10.1080/21691401.2016.1241792. DOI: https://doi.org/10.1080/21691401.2016.1241792

[25] Syed, A., Saraswati, S., Kundu, G. C., & Ahmad, A. (2013). Biological synthesis of silver nanoparticles using the fungus Humicola sp. and evaluation of their cytoxicity using normal and cancer cell lines. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 114, 144-147. https://doi.org/10.1016/j.saa.2013.05.030 DOI: https://doi.org/10.1016/j.saa.2013.05.030

[26] Singh, D., Rathod, V., Ninganagouda, S., Hiremath, J., Singh, A. K., & Mathew, J. (2014). Optimization and characterization of silver nanoparticle by endophytic fungi Penicillium sp. isolated from Curcuma longa (turmeric) and application studies against MDR E. coli and S. aureus. Bioinorganic chemistry and applications, 2014(1), 408021. doi: 10.1155/2014/408021. DOI: https://doi.org/10.1155/2014/408021

[27] Gurunathan, S., Kalishwaralal, K., Vaidyanathan, R., Venkataraman, D., Pandian, S. R. K., Muniyandi, J., ... & Eom, S. H. (2009). Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids and Surfaces B: Biointerfaces, 74(1), 328-335.https://doi.org/10.1016/j.colsurfb.2009.07.048 DOI: https://doi.org/10.1016/j.colsurfb.2009.07.048

[28] Wang, C., Kim, Y. J., Singh, P., Mathiyalagan, R., Jin, Y., & Yang, D. C. (2016). Green synthesis of silver nanoparticles by Bacillus methylotrophicus, and their antimicrobial activity. Artificial cells, nanomedicine, and biotechnology, 44(4), 1127-1132. https://doi.org/10.3109/21691401.2015.1011805 DOI: https://doi.org/10.3109/21691401.2015.1011805

[29] Bhuvaneswari, R., Xavier, R. J., & Arumugam, M. (2017). Facile synthesis of multifunctional silver nanoparticles using mangrove plant Excoecaria agallocha L. for its antibacterial, antioxidant and cytotoxic effects. Journal of parasitic diseases, 41(1), 180-187. doi: 10.1007/s12639-016-0773-6. DOI: https://doi.org/10.1007/s12639-016-0773-6

[30] Suresh, U., Murugan, K., Benelli, G., Nicoletti, M., Barnard, D. R., Panneerselvam, C., ... & Chandramohan, B. (2015). Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitology research, 114, 1551-1562. doi: 10.1007/s00436-015-4339-9. DOI: https://doi.org/10.1007/s00436-015-4339-9

Downloads

Published

2025-04-30

Data Availability Statement

Data will be made available on request from corresponding author

Issue

Section

Articles

Categories