Engineering

Investigation of Thermal Stability of Bakelite by Isoconversional Thermal Analysis

Authors

  • Jehanzaib Ahmed

    The University of Lahore, Sargodha campus, Pakistan
    Author
  • Nazia Shahana Abbas

    Government Graduate College for Women, Chandni Chowk, Sargodha 40100, Pakistan
    Author
  • Muhammad Amin

    The University of Lahore, Sargodha campus, Pakistan
    Author
  • Sara Hasan

    Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
    Author
  • Arooj Anwaar

    Department of Chemistry, The University of Lahore, Sargodha Campus, Sargodha, 40100, Pakistan
    Author
  • Ahmad Shazad Saleemi

    The University of Lahore, Sargodha campus, Pakistan
    Author
  • Nimra Adil

    The University of Lahore, Sargodha campus, Pakistan
    Author
  • Amna Liaqat

    Department of Chemistry, The University of Lahore, Sargodha Campus, Sargodha, 40100, Pakistan
    Author

DOI:

https://doi.org/10.71107/13q71h11

Keywords:

Isoconversional, Thermogravimetric, Bakelite, Flyn-Wall-Ozawa

Abstract

Bakelite or polyoxybenzylmethyleneglycolanhydride is the world’s first fully synthetic plastic. This research work reports on thermal degradation profile of Bakelite using isoconversional thermal analysis as per the recommendation of International Confederation for Thermal Analysis and Calorimetry (ICTAC). For this purpose, thermal degradation of Bakelite was recorded on a SDT Q600 thermal analyzer at heating rates of 5, 10, 15 and 20 °C/min in the range between 20 to 1000 °C. We observed that the degradation of Bakelite occurred in three steps but the first and third steps are insignificant with respect to mass loss and kinetics. The initial and final degradation temperatures (Tdi, Tdf) of Bakelite were recorded between 205-228 °C and 378-427 °C, respectively at different heating rates. The mass loss associated with this phase was calculated about 59 %. The Tdm values were found to be 283-325 °C. Flynn-Wall-Ozawa (FWO) and Kissinger models were applied on the data to find the kinetic parameters such as activation energy (Ea) and order of reaction (n). The Ea value was found to be 102.73 and 104.31 kJ/mol as per FWO and Kissinger models while order of reaction was 1.09. Thermodynamic parameters were also found and the value of ∆H, ∆S and ∆G were found 97.89 kJ/mol, -141.60 kJ/K and 180.46 kJ/mol, receptively. This study explains that Bakelite is a thermally stable compound.

Downloads

Download data is not yet available.

Author Biographies

  • Jehanzaib Ahmed, The University of Lahore, Sargodha campus, Pakistan

    MPhil student at UOL, Pakistan

  • Nazia Shahana Abbas, Government Graduate College for Women, Chandni Chowk, Sargodha 40100, Pakistan

    Assistant Professor at Government Graduate College for Women, Chandni Chowk, Sargodha 40100, Pakistan

  • Muhammad Amin, The University of Lahore, Sargodha campus, Pakistan

    Assistant Professor at UOL, Pakistan

  • Sara Hasan, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia

    Lecturer at UOL

  • Arooj Anwaar, Department of Chemistry, The University of Lahore, Sargodha Campus, Sargodha, 40100, Pakistan

    Department of Chemistry, The University of Lahore, Sargodha Campus, Sargodha, 40100, Pakistan

  • Ahmad Shazad Saleemi, The University of Lahore, Sargodha campus, Pakistan

    MPhil student at UOL, Pakistan

  • Nimra Adil, The University of Lahore, Sargodha campus, Pakistan

    Mphil student at UOL, Pakistan

  • Amna Liaqat, Department of Chemistry, The University of Lahore, Sargodha Campus, Sargodha, 40100, Pakistan

    Department of Chemistry, The University of Lahore, Sargodha Campus, Sargodha, 40100, Pakistan

References

[1] Pilapitiya, P. N. T., & Ratnayake, A. S. (2024). The world of plastic waste: a review. Cleaner Materials, 11, 100220. https://doi.org/10.1016/j.clema.2024.100220 DOI: https://doi.org/10.1016/j.clema.2024.100220

[2] Thompson, R. C., Swan, S. H., Moore, C. J., & Vom Saal, F. S. (2009). Our plastic age. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1973-1976. https://doi.org/10.1098/rstb.2009.0054 DOI: https://doi.org/10.1098/rstb.2009.0054

[3] Schwarz, A. E., Lensen, S. M. C., Langeveld, E., Parker, L. A., & Urbanus, J. H. (2023). Plastics in the global environment assessed through material flow analysis, degradation and environmental transportation. Science of the Total Environment, 875, 162644. https://doi.org/10.1016/j.scitotenv.2023.162644 DOI: https://doi.org/10.1016/j.scitotenv.2023.162644

[4] Wang, B., Zhang, Q., Xiong, G., Ding, F., He, Y., Ren, B., ... & Sun, Y. (2019). Bakelite-type anionic microporous organic polymers with high capacity for selective adsorption of cationic dyes from water. Chemical Engineering Journal, 366, 404-414. 10.1016/j.cej.2019.02.089 DOI: https://doi.org/10.1016/j.cej.2019.02.089

[5] Andrady, A. L., & Neal, M. A. (2009). Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1977-1984. https://doi.org/10.1098/rstb.2008.0304 DOI: https://doi.org/10.1098/rstb.2008.0304

[6] Dharani, P., & Uma, R. N. (2018). Utilization of Bakelite and Waste plastic in flexible pavement construction-A Review. IJSART, 4, 168-173.

[7] Boris, E. (1997). Jeffrey L. Meikle. American Plastic: A Cultural History. New Brunswick, NJ: Rutgers University Press. 1995. Pp. xiv, 403. https://doi.org/10.1086/ahr/102.2.561 DOI: https://doi.org/10.1086/ahr/102.2.561

[8] Davidov, Corinne; Dawes, Ginny Redington (1988). The bakelite jewelry book (1st ed.). New York: Abbeville Press. ISBN 9780896598676.

[9] Azeem, S., & Zain-ul-Abdein, M. (2012). Investigation of thermal conductivity enhancement in bakelite–graphite particulate filled polymeric composite. International Journal of Engineering Science, 52, 30-40. 10.1016/j.ijengsci.2011.12.002 DOI: https://doi.org/10.1016/j.ijengsci.2011.12.002

[10] Crespy, D., Bozonnet, M., & Meier, M. (2008). 100 Years of Bakelite, the Material of a 1000 Uses. Angewandte Chemie International Edition, 47(18), 3322-3328. https://doi.org/10.1002/anie.200704281. DOI: https://doi.org/10.1002/anie.200704281

[11] Mülhaupt, R. (2004). Hermann Staudinger and the origin of macromolecular chemistry. Angewandte Chemie International Edition, 43(9), 1054-1063. https://doi.org/10.1002/anie.200330070 DOI: https://doi.org/10.1002/anie.200330070

[12] Usahanunth, N., & Tuprakay, S. (2017). The transformation of waste Bakelite to replace natural fine aggregate in cement mortar. Case studies in construction materials, 6, 120-133. https://doi.org/10.1016/j.cscm.2017.01.005 DOI: https://doi.org/10.1016/j.cscm.2017.01.005

[13] Mohan, R., Chakrawarthi, V., Nagaraju, T. V., Avudaiappan, S., Awolusi, T. F., Roco-Videla, Á., ... & Kozlov, P. (2023). Performance of recycled Bakelite plastic waste as eco-friendly aggregate in the concrete beams. Case Studies in Construction Materials, 18, e02200. https://doi.org/10.1016/j.cscm.2023.e02200 DOI: https://doi.org/10.1016/j.cscm.2023.e02200

[14] Kasar, P., & Ahmaruzzaman, M. (2019). Studies on catalytic co-pyrolysis of bakelite and refineries residual fuel oil using ZSM-5 catalyst to produce lighter fuel oil. Journal of Scientific & Industrial Research, 78, 426-430.

[15] Nisar, J., Khan, M. A., Ali, G., Iqbal, M., Din, M. I., Hussain, Z., ... & Alamro, F. S. (2022). Polypropylene pyrolysis kinetics under isothermal and non-isothermal conditions: a comparative analysis. Zeitschrift für Physikalische Chemie, 236(9), 1163-1172. https://doi.org/10.1515/zpch-2022-0005 DOI: https://doi.org/10.1515/zpch-2022-0005

[16] Ozawa, T. (1965). A new method of analyzing thermogravimetric data. Bulletin of the chemical society of Japan, 38(11), 1881-1886. http://dx.doi.org/10.1246/bcsj.38.1881 DOI: https://doi.org/10.1246/bcsj.38.1881

[17] Flynn, J. H., & Wall, L. A. (1966a). A quick direct method for the determination of activation energy from thermogravimetric data. Polymer Letters, 4(5), 232-236. https://doi.org/10.1002/pol.1966.110040504 DOI: https://doi.org/10.1002/pol.1966.110040504

[18] Flynn, J. H., & Wall, L. A. (1966b). General treatment of the thermogravimetry of polymers. Journal of research of the National Bureau of Standards. Section A, Physics and chemistry, 70(6), 487. 10.6028/jres.070A.043 DOI: https://doi.org/10.6028/jres.070A.043

[19] Borchardt, H. J., & Daniels, F. (1957). The application of differential thermal analysis to the study of reaction kinetics. Journal of the American Chemical Society, 79(1), 41-46. https://doi.org/10.1021/ja01558a009 DOI: https://doi.org/10.1021/ja01558a009

[20] Coats, A. W., & Redfern, J. P. (1964). Kinetic parameters from thermogravimetric data. Nature, 201(4914), 68-69. http://dx.doi.org/10.1038/201068a0 DOI: https://doi.org/10.1038/201068a0

[21] Elder, J. P. (1985). The general applicability of the Kissinger equation in thermal analysis. Journal of thermal analysis, 30, 657-669. https://doi.org/10.1007/BF01913612 DOI: https://doi.org/10.1007/BF01913612

[22] Vyazovkin, S. V., & Lesnikovich, A. I. (1987). Some aspects of mathematical statistics as applied to nonisothermal kinetics: Part IV. Methodological aspects. Journal of thermal Analysis, 32, 909-918. https://doi.org/10.1007/BF01913777 DOI: https://doi.org/10.1007/BF01913777

Downloads

Published

2025-04-30

Data Availability Statement

Data will be made available from the corresponding author on request

Issue

Section

Articles

Categories