Engineering

A Theoretical Study for Investigation of Structural, Optical, Electronic, and Mechanical Properties of Double Perovskites Halide for Solar Cell Application

Authors

  • Ali Yaqoob

    The University of Lahore, Sargodha campus
    Author
  • Nawishta Jabeen

    Fatima Jinnah Women University, Rawalpindi
    Author
  • Imtiaz Ahmad Khan

    The University of Lahore, Sargodha campus
    Author
  • Ameer Hamza

    The University of Lahore, Sargodha campus
    Author
  • Irfan Haider

    The University of Lahore, Sargodha campus
    Author
  • Fatima Kainat

    The University of Lahore, Sargodha campus
    Author
  • Ahmad Hussain

    The University of Lahore, Sargodha campus
    Author

DOI:

https://doi.org/10.71107/8z89j617

Keywords:

Band-structure, Double perovskite , Optical

Abstract

For the calculation of structural, optical, electronic and mechanical properties of a X2ScTlI6 with X = Cs, Li, Na and K possessing a cubic (2 2 5) structure a density functional theory (DFT) approach has been employed. The Perdew–Burke–Ernzerhof (PBE) approach and alongside generalized gradient approximation (GGA) are employed to investigate the structural, bandgap topologies, density of states and optical parameters of the compounds. High values of optical parameters like absorption (α = 105 cm−1) with direct band gap in semiconductor range of (2.05 eV to 2.42 eV) along with enhanced dielectric functions, refractive index, reflectivity, extinction coefficient, in the spectra of visible and ultraviolet region is observed and total and partial densities of states are also investigated for application in optoelectronic devices such as solar cells. The Pugh's ratio indicates these materials exhibit a nature that is also beneficial for solar cells, especially in applications requiring flexibility and mechanical durability.

Downloads

Download data is not yet available.

Author Biographies

  • Ali Yaqoob, The University of Lahore, Sargodha campus

    MPhil research student at UOL

  • Nawishta Jabeen, Fatima Jinnah Women University, Rawalpindi

    Dr. Nawishta is the head of Physics department at Fatima Jinnah Women University Rawalpindi

  • Imtiaz Ahmad Khan, The University of Lahore, Sargodha campus

    Mr. Imtiaz is research assistant at UOL

  • Ameer Hamza, The University of Lahore, Sargodha campus

    MPhil research student at UOL

  • Irfan Haider, The University of Lahore, Sargodha campus

    MPhil research student

  • Fatima Kainat, The University of Lahore, Sargodha campus

    Lecturer Physics at UOL

  • Ahmad Hussain, The University of Lahore, Sargodha campus

    Dr. Ahmad is the head department of Physics at UOL

References

1. Hussain, Ahmad, et al. "A DFT Study on the Structural, Electronic, Optical, and Elastic Properties of BLSFs XTi4Bi4O15 (X= Sr, Ba, Be, Mg) for Solar Energy Applications." Ceramics 7.4 (2024): 1727-1741. DOI: https://doi.org/10.3390/ceramics7040110

2. Hernández-Callejo, L., S. Gallardo-Saavedra, and V. Alonso-Gómez, A review of photovoltaic systems: Design, operation and maintenance. Solar Energy, 2019. 188: p. 426-440. DOI: https://doi.org/10.1016/j.solener.2019.06.017

3. Chaves, A., et al., Bandgap engineering of two-dimensional semiconductor materials. npj 2D Materials and Applications, 2020. 4(1): p. 29. DOI: https://doi.org/10.1038/s41699-020-00162-4

4. Liu, M., M.B. Johnston, and H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013. 501(7467): p. 395-398. DOI: https://doi.org/10.1038/nature12509

5. Carlson, D.E. and C.R. Wronski, Amorphous silicon solar cell. Applied Physics Letters, 1976. 28(11): p. 671-673. DOI: https://doi.org/10.1063/1.88617

6. Panthani, M.G., et al., Synthesis of CuInS2, CuInSe2, and Cu (In x Ga1-x) Se2 (CIGS) nanocrystal “inks” for printable photovoltaics. Journal of the American Chemical Society, 2008. 130(49): p. 16770-16777. DOI: https://doi.org/10.1021/ja805845q

7. Boeer, K.W., p-type emitters covered with a thin CdS layer show a substantial improvement of Voc and FF. Solar energy materials and solar cells, 2011. 95(2): p. 786-790. DOI: https://doi.org/10.1016/j.solmat.2010.10.024

8. Tang, C.W., Two‐layer organic photovoltaic cell. Applied physics letters, 1986. 48(2): p. 183-185. DOI: https://doi.org/10.1063/1.96937

9. Jong, U.-G., C.-J. Yu, and Y.-H. Kye, Computational prediction of structural, electronic, and optical properties and phase stability of double perovskites K 2 SnX 6 (X= I, Br, Cl). RSC advances, 2020. 10(1): p. 201-209. DOI: https://doi.org/10.1039/C9RA09232C

10. Mahmood, Q., et al., Optoelectronic and thermoelectric properties of double perovskite Rb2PtX6 (X= Cl, Br) for energy harvesting: first-principles investigations. Journal of Physics and Chemistry of Solids, 2021. 148: p. 109665. DOI: https://doi.org/10.1016/j.jpcs.2020.109665

11. Albalawi, H., et al., Study of optical and thermoelectric properties of double perovskites Cs2KTlX6 (X= Cl, Br, I) for solar cell and energy harvesting. Materials Today Communications, 2022. 32: p. 104083. DOI: https://doi.org/10.1016/j.mtcomm.2022.104083

12. Ayyaz, A., et al., Structural, elastic, optoelectronic, and transport properties of Na-based halide double perovskites Na2CuMX6 (M= Sb, Bi, and X= Cl, Br) as renewable energy materials: a DFT insight. Journal of Materials Research, 2023. 38(20): p. 4609-4624. DOI: https://doi.org/10.1557/s43578-023-01181-9

13. Mahmud, S., et al., DFT mediated X2AuYZ6 (X= Cs, Rb; Z= Cl, Br, I) double Perovskites for photovoltaic and wasted heat management device applications. arXiv preprint arXiv:2404.15693, 2024. DOI: https://doi.org/10.1016/j.jpcs.2024.112298

14. Clark, S.J., et al., First principles methods using CASTEP. Zeitschrift für kristallographie-crystalline materials, 2005. 220(5-6): p. 567-570. DOI: https://doi.org/10.1524/zkri.220.5.567.65075

15. Perdew, J.P., K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Physical review letters, 1996. 77(18): p. 3865. DOI: https://doi.org/10.1103/PhysRevLett.77.3865

16. Haas, P., et al., Insight into the performance of GGA functionals for solid-state calculations. Physical Review B—Condensed Matter and Materials Physics, 2009. 80(19): p. 195109. DOI: https://doi.org/10.1103/PhysRevB.80.195109

17. Apurba, I.G.G., et al., Exploring the inorganic perovskite materials Mg3SbX3 (Where, X= I, Br, Cl and F) through the perspective of density functional theory: Adjustment of physical characteristics as consequence of strain. Heliyon, 2024. 10(20). DOI: https://doi.org/10.1016/j.heliyon.2024.e39218

18. Erum, N., et al., DFT insights of mechanical, optoelectronic and thermoelectric properties for Cs2ScTlX6 (X= Cl, Br, I) double perovskites. Optical and Quantum Electronics, 2023. 55(4): p. 337. DOI: https://doi.org/10.1007/s11082-022-04538-2

19. Segall, M., et al., Population analysis of plane-wave electronic structure calculations of bulk materials. Physical Review B, 1996. 54(23): p. 16317. DOI: https://doi.org/10.1103/PhysRevB.54.16317

20. Monkhorst, H.J. and J.D. Pack, Special points for Brillouin-zone integrations. Physical review B, 1976. 13(12): p. 5188. DOI: https://doi.org/10.1103/PhysRevB.13.5188

21. Kainat, F., et al., Effect of Ca, Ba, Be, Mg, and Sr Substitution on Electronic and Optical Properties of XNb2Bi2O9 for Energy Conversion Application Using Generalized Gradient Approximation–Perdew–Burke–Ernzerhof. Crystals, 2024. 14(8): p. 710. DOI: https://doi.org/10.3390/cryst14080710

22. Momin, M.A., et al., Effect of M (Ni, Cu, Zn) doping on the structural, electronic, optical, and thermal properties of CdI2: DFT based theoretical studies. AIP Advances, 2021. 11(5). DOI: https://doi.org/10.1063/5.0050145

23. Hussain, A., et al., First-Principles Calculations of the Structural, Mechanical, Optical, and Electronic Properties of X2Bi4Ti5O18 (X= Pb, Ba, Ca, and Sr) Bismuth-Layered Materials for Photovoltaic Applications. Crystals, 2024. 14(10): p. 870. DOI: https://doi.org/10.3390/cryst14100870

24. Abbas, Z., et al., Effect of Nb, Ta and V replacements on electronic, optical and elastic properties of NbCu3Se4: A GGA+ U study. Journal of Solid State Chemistry, 2021. 301: p. 122338. DOI: https://doi.org/10.1016/j.jssc.2021.122338

25. Hill, R., The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society. Section A, 1952. 65(5): p. 349. DOI: https://doi.org/10.1088/0370-1298/65/5/307

26. Pugh, S., XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954. 45(367): p. 823-843. DOI: https://doi.org/10.1080/14786440808520496

27. Hussain, M., et al., Systematic study of optoelectronic and transport properties of cesium lead halide (Cs2PbX6; X= Cl, Br, I) double perovskites for solar cell applications. Ceramics International, 2020. 46(13): p. 21378-21387. DOI: https://doi.org/10.1016/j.ceramint.2020.05.235

Downloads

Published

2025-04-30

Data Availability Statement

Data will be made available on request from corresponding author

Issue

Section

Articles

Categories