A Theoretical Study for Investigation of Structural, Optical, Electronic, and Mechanical Properties of Double Perovskites Halide for Solar Cell Application
DOI:
https://doi.org/10.71107/8z89j617Keywords:
Band-structure, Double perovskite , OpticalAbstract
For the calculation of structural, optical, electronic and mechanical properties of a X2ScTlI6 with X = Cs, Li, Na and K possessing a cubic (2 2 5) structure a density functional theory (DFT) approach has been employed. The Perdew–Burke–Ernzerhof (PBE) approach and alongside generalized gradient approximation (GGA) are employed to investigate the structural, bandgap topologies, density of states and optical parameters of the compounds. High values of optical parameters like absorption (α = 105 cm−1) with direct band gap in semiconductor range of (2.05 eV to 2.42 eV) along with enhanced dielectric functions, refractive index, reflectivity, extinction coefficient, in the spectra of visible and ultraviolet region is observed and total and partial densities of states are also investigated for application in optoelectronic devices such as solar cells. The Pugh's ratio indicates these materials exhibit a nature that is also beneficial for solar cells, especially in applications requiring flexibility and mechanical durability.
Downloads
References
1. Hussain, Ahmad, et al. "A DFT Study on the Structural, Electronic, Optical, and Elastic Properties of BLSFs XTi4Bi4O15 (X= Sr, Ba, Be, Mg) for Solar Energy Applications." Ceramics 7.4 (2024): 1727-1741. DOI: https://doi.org/10.3390/ceramics7040110
2. Hernández-Callejo, L., S. Gallardo-Saavedra, and V. Alonso-Gómez, A review of photovoltaic systems: Design, operation and maintenance. Solar Energy, 2019. 188: p. 426-440. DOI: https://doi.org/10.1016/j.solener.2019.06.017
3. Chaves, A., et al., Bandgap engineering of two-dimensional semiconductor materials. npj 2D Materials and Applications, 2020. 4(1): p. 29. DOI: https://doi.org/10.1038/s41699-020-00162-4
4. Liu, M., M.B. Johnston, and H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013. 501(7467): p. 395-398. DOI: https://doi.org/10.1038/nature12509
5. Carlson, D.E. and C.R. Wronski, Amorphous silicon solar cell. Applied Physics Letters, 1976. 28(11): p. 671-673. DOI: https://doi.org/10.1063/1.88617
6. Panthani, M.G., et al., Synthesis of CuInS2, CuInSe2, and Cu (In x Ga1-x) Se2 (CIGS) nanocrystal “inks” for printable photovoltaics. Journal of the American Chemical Society, 2008. 130(49): p. 16770-16777. DOI: https://doi.org/10.1021/ja805845q
7. Boeer, K.W., p-type emitters covered with a thin CdS layer show a substantial improvement of Voc and FF. Solar energy materials and solar cells, 2011. 95(2): p. 786-790. DOI: https://doi.org/10.1016/j.solmat.2010.10.024
8. Tang, C.W., Two‐layer organic photovoltaic cell. Applied physics letters, 1986. 48(2): p. 183-185. DOI: https://doi.org/10.1063/1.96937
9. Jong, U.-G., C.-J. Yu, and Y.-H. Kye, Computational prediction of structural, electronic, and optical properties and phase stability of double perovskites K 2 SnX 6 (X= I, Br, Cl). RSC advances, 2020. 10(1): p. 201-209. DOI: https://doi.org/10.1039/C9RA09232C
10. Mahmood, Q., et al., Optoelectronic and thermoelectric properties of double perovskite Rb2PtX6 (X= Cl, Br) for energy harvesting: first-principles investigations. Journal of Physics and Chemistry of Solids, 2021. 148: p. 109665. DOI: https://doi.org/10.1016/j.jpcs.2020.109665
11. Albalawi, H., et al., Study of optical and thermoelectric properties of double perovskites Cs2KTlX6 (X= Cl, Br, I) for solar cell and energy harvesting. Materials Today Communications, 2022. 32: p. 104083. DOI: https://doi.org/10.1016/j.mtcomm.2022.104083
12. Ayyaz, A., et al., Structural, elastic, optoelectronic, and transport properties of Na-based halide double perovskites Na2CuMX6 (M= Sb, Bi, and X= Cl, Br) as renewable energy materials: a DFT insight. Journal of Materials Research, 2023. 38(20): p. 4609-4624. DOI: https://doi.org/10.1557/s43578-023-01181-9
13. Mahmud, S., et al., DFT mediated X2AuYZ6 (X= Cs, Rb; Z= Cl, Br, I) double Perovskites for photovoltaic and wasted heat management device applications. arXiv preprint arXiv:2404.15693, 2024. DOI: https://doi.org/10.1016/j.jpcs.2024.112298
14. Clark, S.J., et al., First principles methods using CASTEP. Zeitschrift für kristallographie-crystalline materials, 2005. 220(5-6): p. 567-570. DOI: https://doi.org/10.1524/zkri.220.5.567.65075
15. Perdew, J.P., K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Physical review letters, 1996. 77(18): p. 3865. DOI: https://doi.org/10.1103/PhysRevLett.77.3865
16. Haas, P., et al., Insight into the performance of GGA functionals for solid-state calculations. Physical Review B—Condensed Matter and Materials Physics, 2009. 80(19): p. 195109. DOI: https://doi.org/10.1103/PhysRevB.80.195109
17. Apurba, I.G.G., et al., Exploring the inorganic perovskite materials Mg3SbX3 (Where, X= I, Br, Cl and F) through the perspective of density functional theory: Adjustment of physical characteristics as consequence of strain. Heliyon, 2024. 10(20). DOI: https://doi.org/10.1016/j.heliyon.2024.e39218
18. Erum, N., et al., DFT insights of mechanical, optoelectronic and thermoelectric properties for Cs2ScTlX6 (X= Cl, Br, I) double perovskites. Optical and Quantum Electronics, 2023. 55(4): p. 337. DOI: https://doi.org/10.1007/s11082-022-04538-2
19. Segall, M., et al., Population analysis of plane-wave electronic structure calculations of bulk materials. Physical Review B, 1996. 54(23): p. 16317. DOI: https://doi.org/10.1103/PhysRevB.54.16317
20. Monkhorst, H.J. and J.D. Pack, Special points for Brillouin-zone integrations. Physical review B, 1976. 13(12): p. 5188. DOI: https://doi.org/10.1103/PhysRevB.13.5188
21. Kainat, F., et al., Effect of Ca, Ba, Be, Mg, and Sr Substitution on Electronic and Optical Properties of XNb2Bi2O9 for Energy Conversion Application Using Generalized Gradient Approximation–Perdew–Burke–Ernzerhof. Crystals, 2024. 14(8): p. 710. DOI: https://doi.org/10.3390/cryst14080710
22. Momin, M.A., et al., Effect of M (Ni, Cu, Zn) doping on the structural, electronic, optical, and thermal properties of CdI2: DFT based theoretical studies. AIP Advances, 2021. 11(5). DOI: https://doi.org/10.1063/5.0050145
23. Hussain, A., et al., First-Principles Calculations of the Structural, Mechanical, Optical, and Electronic Properties of X2Bi4Ti5O18 (X= Pb, Ba, Ca, and Sr) Bismuth-Layered Materials for Photovoltaic Applications. Crystals, 2024. 14(10): p. 870. DOI: https://doi.org/10.3390/cryst14100870
24. Abbas, Z., et al., Effect of Nb, Ta and V replacements on electronic, optical and elastic properties of NbCu3Se4: A GGA+ U study. Journal of Solid State Chemistry, 2021. 301: p. 122338. DOI: https://doi.org/10.1016/j.jssc.2021.122338
25. Hill, R., The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society. Section A, 1952. 65(5): p. 349. DOI: https://doi.org/10.1088/0370-1298/65/5/307
26. Pugh, S., XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954. 45(367): p. 823-843. DOI: https://doi.org/10.1080/14786440808520496
27. Hussain, M., et al., Systematic study of optoelectronic and transport properties of cesium lead halide (Cs2PbX6; X= Cl, Br, I) double perovskites for solar cell applications. Ceramics International, 2020. 46(13): p. 21378-21387. DOI: https://doi.org/10.1016/j.ceramint.2020.05.235
Downloads
Published
Data Availability Statement
Data will be made available on request from corresponding author
License
Copyright (c) 2025 Ali Yaqoob, Nawishta Jabeen, Imtiaz Ahmad Khan, Ameer Hamza, Irfan Haider, Fatima Kainat, Ahmad Hussain (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Most read articles by the same author(s)
- Irfan Haider, Imtiaz Ahmad Khan, Fatima Kainat, Hassan Ali Akhter, Hassaan Khalid, Nawishta Jabeen, Ahmad Hussain, Theoretical analysis of power-law nanofluid across extended sheet with thermal-concentration slip and Soret/Dufour effect , Conclusions in Engineering: Vol. 1 No. 1 (2025): Conclusions in Engineering
- Omer Musa, Zonghan Yu, Ahmad Hussain , Nawishta Jabeen, Abdalazeem Adam, Bridging Knowledge and Action: The Vision of Conclusions in Engineering (Editorial) , Conclusions in Engineering: Vol. 1 No. 1 (2025): Conclusions in Engineering
Similar Articles
- Muniba Yaseen Naz, Suleman Ahmad, Uroosa Hadi, Tayyaba Ghani, Robab Mehmood, Atta Ullah Shah, Mazhar Mehmood, Synthesis, Charecterization and Photocatlytic Application of the Grassy-Free Standing Titanium dioxide Nanotunes (Gfs –TiNts) , Conclusions in Engineering: Vol. 1 No. 1 (2025): Conclusions in Engineering
- Muniba Yaseen Naz, Fatima Jamshad, Tayyaba Ghani, Atta Ullah Shah, Uroosa Hadi, Mazhar Mehmood, Suleman Ahmad, Synthesis and Characterization of TiO2-MWCNTs Nanocomposit: A Novel route for the efficient degradation of N, N-Dimethylformamide , Conclusions in Engineering: Vol. 1 No. 1 (2025): Conclusions in Engineering
- Rida Iftikhar, Nazia Shahana Abbas, Muhammad Amin, Sara Hasan, Nimra Adil, Ahmad Shazad Saleemi, Arooj Anwaar, Facile Synthesis and Characterization of Silver Nanoparticles Based Sensors for Colorimetric Detection of Mercury Ions , Conclusions in Engineering: Articles in Press
- Ayesha Ashfaq, Muhammad Tallal, Amna Liaqat, Nadia Khan, Nouman Waheed, Muhammad Amin, Carbon Nitride Nanosheet-based Titanium Dioxide Hybrid Photocatalyst for Organic Effluent Degradation , Conclusions in Engineering: Articles in Press
You may also start an advanced similarity search for this article.