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ABSTRACT: In the present work, titanium dioxide and multiwall carbon nanotubes ( TiO2-MWCNTs)
based nanocomposite is prepared. The MWCNTs has been prepared through Chemical Vapor Deposition
(CVD), and TiO2 nanoparticles are synthesized by wet-chemical method. Morphology, average size, crys-
talline nature and optical behavior of the nanomaterial is measured through Scanning electron Microscopy
(SEM), X-ray Diffraction (XRD) and Uv-visible spectroscopy. Scanning Electron Microscopy revealed
the existence of well-dispersed TiO2 nanoparticles (diameter ∼ 90 nm ) over the synthesized MWCNTs
(tube outer diameter ∼ 90 − 95 nm ). It is observed from the uv-visible spectroscopy that an increase in
the light absorption towards longer wavelength < 400 nm also occurred for the TiO2-MWCNTs nanocom-
posites as compared to bare MWCNts. Finally, photocatalysis is performed over a toxic organic solvent
N,N Dimethylformamide (DMF) using synthesized TiO2-MWCNTs nanocomposite. It is found that TiO2-
MWCNTs resulted in ∼ 80% DMF degradation in 90 minutes. Owing to the better size distribution,
crystalline nature and light absorption properties, the synthesized TiO2-MWCNTs performed well for the
photocatalytic conversion of N,N-Dimethylformamide. This study also concludes that the TiO2− MWCNts
nanocomposites may also pave the way for broader environmental remediation-based applications.
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I. INTRODUCTION

With the recent developments of automation, the usage
of batteries has been increased. The dimethylformamide
(DMF) is a solvent used as electrolyte in lithium-ion
batteries. These solvents have several benefits such as
improving the cycling durability of batteries and it is
utilized worldwide. The DMF solvent is a toxic sub-
stance with very high health concerns1,2. Before dis-
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posing it into the environment, effective treatment tech-
niques are required for DMF conversion. In this regard
photocatalytic nanomaterials conversion is used which
is one of the most promising approaches and it is also
cost effective with the high treatment efficiency3.

The CNTs plays an important role in the inhibition of
the recombination during photocatalytic process. The
large specific surface area multi-wall carbon nanotube
(MWCNTs) are generally used to promote the disper-
sion of metal oxides4. Among metal oxides, the Tita-
nium dioxide (TiO2) has been generally been utilized
for environmental remediation especially for DMF con-
version under light irradiation5. When thin films are
implemented with TiO2 the MWCNTs capture the elec-
trons from TiO2 and enhance the decomposition of or-
ganic compounds6. The photocatalytic conversion in
photocatalysis scales with surface area. The creation of
a large surface area TiO2 has been in practice for en-
hancing TiO2 utility. Nanostructuring, making various
composites of other nanomaterials with TiO2 and sen-
sitization can lower the band gap. When illuminated
by UV light an electron in TiO2 is transferred from the
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valence band to the conduction band (3.10–4.43 eV),
leaving a hole in the valence band. A pair of electrons
and holes are created. Photo-activated performance is
affected negatively by the recombination of these elec-
tron and hole on TiO2-surfaces. Active radicals like O2
and OH- initiate from adsorbed species on TiO2 sur-
faces swapping electrons and holes that contribute in
the degradation processes7.
The fundamental catalytic performance of semicon-

ductor photocatalysts has been significantly improved
in this context by the inclusion of carbon nanotubes8.
In recent studies, the coupled TiO2-MWCNTs have
been applied as photocatalyst for degradation of dif-
ferent kinds of organic pollutants8–10. As the presence
of MWCNTs improves the separation of produced elec-
tron–hole pairs, and this increases the photocatalytic
activity for degradation of pollutants11. Literature con-
firms the potential of TiO2 and MWCNts for the degra-
dation of various chemical organic pollutants. The pho-
tocatalytic efficiencies of various TiO2 and carbon nan-
otubes as catalysts for the photodegradation of various
organic compounds is presented in Table I.
In recent years, pristine MWCNTs have been utilized

as a support for synthesis of TiO2-MWCNTs nanocom-
posite. While individual TiO2 have also been explored
for photocatalysis, the synergistic interaction within a
composite system with carbon nanotubes has not been
explored for DMF photodegradation. Unlike previous
studies, the TiO2-MWCNTs nanocomposites are pre-
pared through CVD and wet-chemistry method that
may prove to enhance the metal support interaction.
The focus of this work also includes to observe the
morphological, structural and uv-visible light absorp-
tion properties of the synthesized nanocomposite. Cur-
rent study introduces an innovative approach by uti-
lizing the tailored TiO2-MWCNTs to achieve superior
catalytic efficiency for toxic organic solvent. To the best
of our knowledge, the current work is the first attempt
to investigate the TiO2-MWCNTs based nanocomposite
for the photocatalytic conversion of DMF.

II. METHODOLOGY

All the chemicals and reagents used for the prepara-
tion of TiO2 nanoparticles were purchased from Sigma-
Aldrich (99%) analytical reagent. All chemicals were
pure and of lab grade. The MWCNTs were prepared
through CVD using Nickel based nanocatalyst. The
nickel chloride alcogel was prepared and performed elec-
trolysis. In the first step, the MWCNTs were synthe-
sized by CVD method at temperature 700◦C to 900◦C.
During synthesis argon gas was used as a carrier gas and

FIG. 1: Schematics for the preparation of
TiO2 −MWCNTs nanocomposite.

ethanol as a hydrocarbon source12.
The composite of MWCNTs and TiO2 nanoparticles

are prepared (Fig. 1). The MWCNTs used in this hy-
brid pristine. After synthesis, no chemical treatment
was performed over CNTs. Ethanol was used to dis-
perse the MWCNTs and vigorously stirred using an ul-
trasonic bath. Afterwards, deionized water and Tert-
butanol (TB) was added to the suspension. Titanium
tetraisopropoxide (TTIP) was dissolved in ethanol and
slowly dropped into the MWCNTs suspension. Entire
mixture was stirred for 1 hour at room temperature.
Remaining precipitate was filtered and dried in air at
100◦C for 6 hours. To obtain the desired anatase crys-
talline phase of TiO2, dried samples were calcined in
air at 450◦C for 2 hours. For photocatalysis, a diluted
aqueous solution of DMF was prepared and 5.6 mg of
catalyst was added in it. The solution was kept in dark
for 30 minutes and then light illumination was provided.
Subsequently, 4−5ml solution was taken (with 20 min-
utes of time interval) and UV spectra were performed
to estimate degradation with time.

III. CHARACTERIZATION

The surface morphology and average particle size were
estimated by TESCAN MAIA3 Triglav TM and VEGA
TESCAN Scanning Electron Microscopy (SEM). The
ARL Equinox 3000 system was used to perform X-ray
Diffraction (XRD). The optical properties were studied
by Spectro UV-VIS Double Beam UVD-3500 Labomed,
Inc. The photodegradation was conducted under light
of a 150 W fluorescent high-pressure Xenon lamp (Philip
ML 150 W ).
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TABLE I: Photodegradation of various organic compounds through TiO2 and MWCNTs

Sr.No Nano material Organic Pollutant Photocatalytic Efficiency Ref
1 TiO2 Nanoparticles Phenol Around 90% 22

2 TiO2 immobilized Silica Gel Organophosphorous pesticides 99% 23

3 TiO2 based Composites Methanol - 24

4 TiO2 Nanoparticles Warfarin 99% 25

5 Cu-Carbon Nanotubes p-chloroaniline 85% 26

6 TiO2@MWCNTs alkyl dinitro phenol compound ~95% 27

FIG. 2: FE-SEM images of the grown MWCNTs through CVD 500 nm (a) and at 2µ m (b)

IV. RESULTS AND DISCUSSION

Figure 2(a, b) shows the typical SEM images of the
samples which is synthesizes by CVD of carbon. From
the magnified SEM images of 500 nm , it is noticed
that some tubes are formed nearly less than 120 nm
diameter covering the catalyst particles. While, from
the micrograph in Fig. 2(b), it can be observed that
the length of the grown nanotubes is around 1µ m. It
also demonstrates the defective nature of the synthe-
sized nanotubes. The tube size distribution graph (di-
ameter vs. counts) in Fig. 3(a) demonstrates the unifor-
mity of the tube diameter around 90−95 nm. The syn-
thesized material also includes catalyst particles. The
irregular structures are likely to be formed due to over
growth on Ni particles caused by the high temperature.
The Fig. 4(a) demonstrates the magnified images at

1µ m for the synthesized TiO2-MWCNTs composite. It
also demonstrates the well dispersed TiO2 nanoparticles
along with tubes. From the particle size distribution in
Fig. 3(b), the average TiO2 nanoparticles can be esti-
mated around 80−90 nm and lying distinctively. Some
of the randomly lying tubes with composite can also be
observed in Fig. 4(b).

Fig. 5 shows the XRD pattern of synthesized TiO2
MWCNTs composite which reveals the different inten-
sity peaks for TiO2 anatase phase and carbon nan-
otubes. The data obtained shows the peaks for anatase
TiO2 at 25.3◦,38.39◦,48.1◦,63.1◦,70◦ with reference
from JCPDS with Reference code 01-071-1169 and 01-
078-24861,4,28,30. The peaks around 25◦ and 48◦ are
also reported in literature as characteristic peaks for
anatase TiO2. The peaks around 26◦,44.4◦ and 54.6◦

for Graphitic carbon are presented in the form of MWC-
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TABLE II: Various nanomaterials, their synthesis route and degradation parameters in comparison for the DMF
conversion with TiO2-MWCNTs

Sr. No Material Quantity Synthesis Degradation Degradation Time Ref
Route Method & Temp. (hr)

1 TiO2/Ag
200mm2 Anodization Photocatalysis 94% at

3 3working and of Gaseous 220◦C
area Photoreduction DMF

2 Pt/TiO2, Ru/TiO2 0.5g Wet impregnation Catalytic wet Air Oxidation ∼95% 6 19

3 Ru/ZrO2 support
∼0.2g Wet Catalytic wet 98% at

2.5 20impregnation Air Oxidation 240◦C

4 CeOx

0.1g
Sol Gel DMF Oxidation

400◦C
— 2180%

5 TiO2-MWCNTs
<10 mg Chemical Vapor

Photocatalysis
80% in 90

1.5 This WorkDeposition and minutes at 30◦C
Wet Chemistry

NTs with reference from JCPDS with Reference code 00-
008-0415, 00-001-0640, 00-025-0284 and also reported in
the literature13–16.

The relatively weak and very small peak at 76.2◦

corresponds to (220) nickel and used as catalyst for
MWCNTs7,17. The XRD pattern confirmed the for-
mation of crystalline anatase TiO2 with the MWCNTs.
The well Graphitic peak at 002 around 26.05◦ (d spac-
ing = 3.14) accredited to pristine MWCNTs reported in
literature18. It confirmed the pristine nature of MWC-
NTs with no chemical post-treatment.

UV-visible absorption spectra for MWCNTs and
TiO2-MWCNTs Nanocomposite are shown in Fig. 6.
The peak for TiO2 with maximum absorption is ob-
served at 265 nm . The absorption spectra with MWC-
NTs sample exhibited strong absorption below 300 nm
. The composite material showed absorbance at the
higher wavelength side and around 250 − 380 nm. The
UV peak for TiO2-MWCNTs is at 268 nm and max-
imum absorbance at 360 nm . The UV-visible ab-
sorbance spectra confirmed with the incorporation of
TiO2 and 6% absorption intensity while as compared to
the sample without TiO2 Nanoparticles, a 15% wave-
length shift also occurred. This increase can be at-
tributed to increased chemical defects and chemical in-
teractions caused by TiO2 addition.
The UV absorption graph along with Photocatalytic

conversion efficiency for DMF is shown in Fig. 7. The
percentage photocataylic efficiency (PDE) was found by
equation:

%PDE =
[
Cin −Cf

Cf

]
×100

Where Cjn and Cf are the initial concentration (t =
0) and final concentrations (at time t ).

The composite material has shown a visible reduction
in absorption spectra (λ = 250 nm ) with degradation
efficiency 80% within 90 minutes. It may account for
the shifting of absorption peak towards longer wave-
lengths by incorporation of TiO2 with MWCNTs. It
results in the production of a new energy level with de-
creased band gap energy and lower rate of electron-hole
recombination [28]. The electrons generated by light
irradiation travelled towards the conduction band and
holes remained in the valance band. In fact, the pro-
duced electrons can form oxygen radicals. Later, the
reaction causes to the formation of hydroxyl radicals
(OH•) that can fruitfully destruct the organic contam-
inant DMF by targeting the weaker bond present. The
presence of MWCNTs improves the separation of pro-
duced electron-hole pairs, and this increases the pho-
tocatalytic activity for degradation DMF. Furthermore,
the good dispersion of the TiO2 particles over MWCNts
assisted in low electron hole recombination. The high
surface area due to small particle sizes generated more
active sites for the capture of photogenerated electrons.
Thus, good photo efficiency is a result of specific surface
area, charge-carrier dynamics and light absorption effi-
ciency [29]. A comparison with the literature presented
in table 2 demonstrates that the current work is a good
optimization of the aqueous DMF Degradation with re-
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FIG. 3: The tube diameter and particle size
distribution for MWCNTs and TiO2NPs2 in

TiO2-MWCNTs.

spect to degradation time and temperature. Therefore
the MWCNTs- TiO2 nanocomposite excited under UV-
visible light lead to efficient DMF conversion through
photocatalysis.

V. CONCLUSION

In this study TiO2-MWCNts based photocatalyst was
successfully synthesized. The MWCNTs were syn-
thesized by CVD over the Ni catalyst. Afterwards,
TiO2 nanoparticles synergistically incorporated to these

FIG. 4: SEM images of the TiO2-MWCNTs
nanocomposite.

MWCNts by wet chemical synthesis. The morphologi-
cal, structural and optical analyses through SEM, XRD
and UV-visible characterizations confirmed the fabrica-
tion of the nanocomposite. The MWCNTs and TiO2
Nanoparticles formed with average diameter ∼ 95 nm
and 80 nm respectively. XRD confirmed the existence of
stable anatase phase TiO2 and Graphite peak for MWC-
Nts. The UV-visible absorbance for TiO2-MWCNts in-
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FIG. 5: XRD pattern for the prepared the TiO2-MWCNTs nanocomposite.

FIG. 6: UV-Visible spectrum for TiO2 and
TiO2-MWCNTs.

creased 6% than bare MWCNts and a 15% red shift in
wavelength was also observed. The good dispersion of
TiO2 nanopartices with ore active sites, lower electron
hole recombination and decreased band gap for the syn-

FIG. 7: UV Absorption spectra and photodegradation
efficiency for DMF with incorporated TiO2-MWCNTs.

thesized TiO2-MWCNTs Nanocomposite an 80% pho-
tocatalytic conversion of N,N-Dimethylformamide was
achieved within 90 minutes. These findings not only
highlighted the potential of TiO2 − MWCNts compos-
ites as an efficient photocatalysts but also suggested a
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sustainable energy and time effective pathway for ad-
dressing issues regarding toxic organic pollutants.
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