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ABSTRACT: In this paper, we study the oscillation of impulsive fractional differential equations.Using
the inequality principle and Bihari Lemma,sufficient conditions are found for both the asymptotic and
oscillatory phases of the equation. An example is given to illustrate the validity of our main results. The
oscillation of an impulsive fractional differential equation with two different Caputo derivatives is being
studied for the first time.
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I. INTRODUCTION

Fractional differential equations are becoming more
common in various research fields, essential for describ-
ing the mechanical and electrical behaviors of physical
materials. They find application in rheological theory
and various other physical phenomena, see1–3. To ex-
plore details regarding the oscillation of fractional dif-
ferential equations, readers are encouraged to refer to
the pertinent literature4–9. Lately, several authors have
investigated the oscillatory tendencies exhibited by var-
ious categories of fractional differential equations and
impulsive partial differential equations10–15,17–19. Frac-
tional differential equation and inclusions involving Ca-
puto derivative or Riemann-Liouville derivative have ob-
tained more and more results see20–28. Recently, Hil-
fer initiated an extended Riemann-Liouville fractional

derivative, named Hilfer fractional derivative, which in-
terpolates Caputo fractional derivative and Riemann Li-
ouville fractional.This operator emerged in theoretical
simulations of dielectric relaxation in glass-forming ma-
terials. Hilfer et al.29 introduced linear differential equa-
tions using the Hilfer fractional derivative and utilized
operational calculus to solve these generalized fractional
differential equations.

In10,15,19, the authors have formulated conditions
that adequately describe the oscillatory tendencies ob-
served in fractional differential equations that include
damping terms. In11, the authors have investigated
the oscillatory features of solutions in a nonlinear frac-
tional partial differential equation containing damping
and a forced term, specifically under Robin bound-
ary conditions. Furthermore, the authors have inves-
tigated recent progress in understanding the oscillatory
properties of solutions in fractional ordinary differen-
tial equations14,16. In18 Li has identified sufficient con-
ditions for forced oscillations in specific partial frac-
tional differential equations using methods that incor-
porate differential inequalities. In30 the researchers ex-
plored the controllability and optimal control aspects of
a system characterized by two distinct fractional orders,
0< α < β < 1

{
Dβ0+zz(u) =Az(u) +Bz(u− τ) +C ·Dα0+z(u) +Gz(u), u≥ 0
z(u) = φ(u);−τ ≤ u≤ 0
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In10, the researchers analyzed the oscillatory dynam- ics of an impulsive fractional differential equation fea-
turing a Caputo derivative in a specific form


cDq0z(u) = e(u) +f(u,z(u)), b > 1, u ∈ I ′ := I/u1, . . . .,um, I := [b,∞,)

4z (ur1) = yr1 ,4z′ (ur1) = y−r1, r1 = 1,2, . . . . . .
z(b) = z(0),z′(b) = z̄

where cDq0 is the Caputo derivative of the order q ∈
(1,2),z0, z̄,yr1 ,y

−r1 ∈R,ur1 satisfy 0 = u0 < .. . < um→
∞ as m→∞.∆v (ur1) = v

(
u+
r1

)
−v
(
u−r1

)
with v

(
u+
r1

)
=

limε→∞+ ,v (ur1 + ε) and v
(
u−r1

)
= limε→∞− ,v (ur1 + ε)

represent the right and left limits of v(u) at u = ur1 .
Inspired by previous research. We concern the oscilla-
tory behavior of solutions in a fractional impulsive Hilfer
differential equation


HDp,qb z(u) = λe(u) +f(u,z(u)) +

∑n
i=1 bi(u)gi (z (u− τi)) , u ∈ I ′ := I/u1, . . . .,um,
I := [b,∞),(

I1−r
b 4z

)
(ur1) = yr, r = 1,2, . . .
I1−r
b z(b) = z0,

(1)

where HDp,qb is the Hilfer fractional derivative
of the order 0 ≤ q < p ≤ 1 and r = p + q −
pq, z0, z̄, yr1 , ȳr1 ∈ R, u + r1 satisfy b =
u0 < .. . < um → ∞ as m → ∞.∆v (ur1) = v

(+
r1

)
−

v
(
u−r1

)
with v

(
u+
r1

)
= limε→0+ v (ur1 + ε) and v

(
u−r1

)
=

limε→0− v (ur1 + ε) represent the right and left limits of
v(U) at u= ur1 . The objective of this paper is to explore
the oscillatory dynamics of Hilfer fractional differential
equations. The oscillatory sufficient condition for (1) is
derived through an analysis of its integral expression.
To facilitate the initial investigation of fractional dif-
ferential equation oscillation with Hilfer derivative, we
employ an exceedingly simple impulsive condition.
The objective of this paper is to explore the oscillatory

dynamics of Hilfer fractional differential equations. The

oscillatory sufficient condition for (1) is derived through
an analysis of its integral expression. To facilitate the
initial investigation of fractional differential equation os-
cillation with Hilfer derivative, we employ an exceed-
ingly simple impulsive condition

(
I1−r
b 4z

)
(ur1) = yr1 , r = 1,2, . . . . . .

II. MAIN RESULTS

We are now in a position to state and prove our main
results.

Theorem 2.1 If 0<p< 1, 0≤ q≤ 1, µ > 0, α >
1,β= α

µ−1 ,α(p−2)+1> 0, and the function z(u) : I→R
is continuous, then

λ

u

∫ u

0
(u−w)p−1|e(w)|dw is bounded for all u≥ 0, (2)

as well as the function f(u,z(u)) satisfy the given con-
ditions. (i) In D = (u,z(u)) : u ∈ J,z ∈ R,f(u,z(u)) is
continuous. (ii) Non negative continuous functions g

and h are defined on R+ := [0,∞)→ R+, with g being
non decreasing and let 0< µ≤ 2−p−1/α such that
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|f(u,z)| ≤ uµ−1h(t)g
(
|z|
u

)
, u > 0, (u,z) ∈D (3)

and

∫ infty

0
wβθ/αhβ(w)dw <∞ (4)

holds, where θ := α(p+µ−2) + 1≤ 0. (iii)

∫ ∞
0

dη

gβ(η)
→∞ (5)

The impulsive points meet the following criteria. (iv)
There is a constant M such that

∣∣∣∣∣
r∑
i=1

xi

∣∣∣∣∣<N, n= 1,2, . . . . . . (6)

If a solution to (1) is w(v), then

lim
v→∞

sup |w(v)|
v

<∞ (7)

Proof. From (4), we get that

|w(v)| ≤|w0|+
λ

Γp

∫ v

0
(v−w)p−1|e(w)|dw+

∣∣∣∣∣
r∑
i=1

yi

∣∣∣∣∣+ 1
Γp

∫ v

0
(v−w)p−1|f(w,z(w))|dw

+
n∑
i=1

bi(w)gi (z (w− τi)) for u ∈ (vr,vr+1]

Then the condition (II) is applied, we have

|w(v)| ≤
∣∣∣∣w0 + λ

Γp

∫ v

0
(v−w)p−1

∣∣∣∣e(w)

∣∣∣∣∣dw+

∣∣∣∣∣
r∑
i=1

yi

∣∣∣∣∣+ 1
Γp

∫ u

0
(v−w)p−1wµ−1h(w)g

(
|z(w)|
w

)

dw+
n∑
i=1

bi(w)gi (z (w− τi)) for vin(vr,vr+1] .

We obtain λ
u

∫ v
0 (v−w)p−1|e(w)|dw ≤ c for all u ≥ b where c is constant from 1. Consider C(r) = |w0|+∣∣∑r

i=1 yi
∣∣+ c

Γp We have

|z(u)| ≤ C(r)v+ 1
Γp

∫ v

0
(v−w)p−1wµ−1h(w)g

(
|z(w)|
w

)
dw+

n∑
i=1

bi(w)

gi (z (w− τi))dw

≤ C(r)v+ 1
Γp (u)

∫ v

0
(v−w)p−2wµ−1h(w)g

(
|z(w)|
w

)
dw+u

n∑
i=1

bi(w)gi (z (w− τi))dw

for v ∈ (vr,vr+1] .
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Thus, the inequality results

|w(v)|
v ≤ C(r) + 1

Γp
∫ v
0 (v−w)p−2wµ−1h(w)g

(
|z(w)|
w

)
dw+

∑n
i=1 bi(w)gi (z (w− τi))dw

for v ∈ (vr,vr+1] .
(8)

Assume we denote the right side of inequality as x(v).
We then obtain the following inequality:

|w|
v
≤ x(v,r), vin(vr,vr+1] (9)

Given that the function g is non-decreasing, inequal-

ity can be expressed as:

g

(
|w|
v

)
≤ g(x(v,r)), v ∈ (vr,vr+1]

Thus we obtain from the definition of x(v,r)

x(v,r)≤ 1 +C(r) + 1
Γp
∫ v
0 (v−w)δ−1wµ−1h(w)g(x(w,r))dw+

∑n
i=1 bi(w)gi (z (w− τi))dw

for v ∈ (vr,vr+1] (10)

where 0< δ= p−1< 1. Applying Lemma (6) and Hold- ers inequality, we get

∫ v

0
(v−w)δ−1wµ−1h(w)g(x(w,r))dw+

n∑
i=1

∫ v

0
bi(w)gi (z (w− τi))dw ≤

(∫ v

0
(v−w)α(δ−1)

wα(µ−1)dw
) 1
α

(∫ v

0
hβ(w)gβ(x(w,r))dw

) 1
β

+
n∑
i=1

(∫ v

0
bαi (w)dw

)1/α

(∫ v

0
gβi (z (w− τi))dw

)1/β
≤
(
Buθ

) 1
α

(∫ v

0
hβ(w)gβ(x(w,r))dw

) 1
β

+
(
Auθ

)1/α n∑
i=1(∫ v

0
gβi (z (w− τi))dw

)1/β
, for v ∈ (vr,vr+1]

where θ = α(p+µ− 2) + 1 ≤ 0, and B := B(α(µ− 1) + 1,α(δ− 1) + 1). Utilizing the fact that u > w > m and
θ ≤ 0



Conclusions in Engineering 41

∫ t

0
(v−w)δ−1wµ−1h(w)g(x(w,r))dw+

n∑
i=1

∫ v

0
bi(w)gi (z (w− τi))dw ≤ (B)1/α

(∫ v

0
wθβ/αhβ(w)

gβ(z(w,r))dw
)1/β

+ (A)1/α
n∑
i=1

(∫ v

0
gβi (z (w− τi))dw

)1/β
, for vin(vr,vr+1] .

Using the elementary inequality

(y+z)β ≤ 2β−1
(
yβ +zβ

)
, y, z ≥ 0, β > 1 (11)

For u ∈ (ur,ur+1], we infer that

xβ(v,r)≤2β−1

[
(1 +C(r))β +

(
B1/α 1

Γp

)β ∫ v

m
wθβ/αhβ(w)gβ(x(w,r))dw

+
(
A1/α 1

Γp

)β n∑
i=1

(∫ v

0
gβi (z (w− τi))dw

)]
.

If we denote P1(r) = 2β−1(1 + C(r))β , Q1 = 2β−1
(
B1/α 1

Γα

)
,R1 =

(
A1/α 1

Γp

)
then

xβ(v,r)≤ P1(r) +Q1
∫ v
0 w

θβ/αhβ(w)gβ(x(w,r))dw+R1
∑n
i=1

(∫ v
0 g

β
i (z (wτi))dw

for v ∈ (vr,vr+1] .

Describe

wη = gβ(η)

G(ξ) +
∫ ξ

xr

dη

w(η) , xr = x
(
v+
r , r

) (12)

Since G(x(v,r)) =
∫ x(v,r)
xr

dη
gβ(η) , condition (iii) sug-

gests that limx(v,r)→∞G(x(v,r)) =∞, we can obtain
using the Bihari Lemma,
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xβ(v,r)≤R(r) :=G−1
(
G(p1(r)) +Q1

∫ v
0 w

θβ/αhβ(w)dw+R1
∑n
i=1

(∫ v
0 g

β
i (z (w− τi))dw

))
for v ∈ (vr,vr+1] , r = 1,2, . . . .

Due to the boundedness of P1(r) and condition (iv).
Thus , we can conclude R(r), r= 1,2, . . .. is bounded by
(12). Then

xβ(v,r)≤R= sup
r≥1

R(r), v > v1, u= 1,2, . . . ..

We drive that x(v,r)≤R1/β , and using equation (8),
we get

|z(v)|
v
≤R1/β , v ≥ v1.

We conclude that

lim
v→∞

sup |z(v)|
v

<∞

This completes the proof.

Theorem 1 Let α,β,µ,p,q, and θ be given as in
previous Theorem 2.1 , with the conditions (5) to (10)
satisfied. If any constant d1 ∈ (M +z0,1 +M +z0),

lim
v→∞

inf [d1.u+
∫ v

0
(v−w)p−1e(w)dw] =−∞ (13)

lim
v→∞

sup[d1.v+
∫ v

0
(v−w)p−1e(w)dw] =∞ (14)

subsequently, (1) oscillates.

III. CONCLUSION

In this study, we explore impulsive fractional differen-
tial equations (1) that encompass Hilfer derivatives, ac-
counting for both initial and impulsive conditions. By
utilizing these conditions, we establish sufficient cri-
teria for the oscillation of solutions to equations (1).
The oscillatory nature of the equation is then confirmed
through the application of the inequality principle and
Bihari Lemma. Furthermore, an illustrative example is
presented to highlight the main results.
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