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ABSTRACT: In this paper, we explore the oscillation of impulsive Caputo fractional differential equations.
Conditions for both asymptotic and oscillatory outcomes are established through the application of the
inequality principle and Bihari Lemma. An example is given to explain the results of all problems. This is
the first time to study the oscillation of impulsive fractional differential equation with Caputo Derivative.
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I. INTRODUCTION

Fractional differential equations are generalizations of
classical differential equations of integer order and can
find applications in many fields of science and engi-
neering It has different research areas on mechanical
and electrical properties of real materials,as well as in
rheological theory and other physical problems,see1–3.
For articles on the oscillation of fractional differential
equations,readers can refer to literatures4–10.

Fractional differential equation has been the focus of
many studies due to their frequent appearance in many
applications in physics,biology, control theory,control
processing, engineering and has attracted more and
more scholars.The oscillation of impulsive fractional
differential equation as a new research field and the
new interesting results have already been obtained.Due
to the intensive development about the theory of
impulsive differential equations and fractional calculus
and their widely applications in diverse fields,impulsive
fractional differential equations have become a new hot
topic. Very recently,more and more researchers show
great interest in the field of impulsive problems for
fractional differential equations,see7,11–13.

In 2016, Jessada Tariboon and Sotiris
K.Ntouyas14investigated oscillation results for the
solutions of impulsive fractional differential equation
with conformable derivative of the form,

{
tkD

α (p(t) [tkDαx(t) + r(t)x(t)]) + q(t)x(t) = 0, t > t0, t 6= tk, α ∈ (1,2),
x
(
t+k
)

= akx
(
t−k
)
, tkD

αx
(
t+k
)

= bktk−1D
αx
(
t−k
)
,k = 1,2, . . . . . . .

They obtained some new oscillatory results by using
the equivalence transformation and the associated Ric-
cati techniques.

a)Electronic mail: azmatullah.khan@math.uol.edu.pk

The definition of conformable derivative is only related
to the limit form and is similar to form of integer deriva-
tive.Therefore,the methods for oscillation of integer dif-
ferential equation can be applied to conformable deriva-
tive only through a simple transformation.There are still
some gaps between conformable derivative and classical

https://doi.org/10.71107/977nnr55
mailto:azmatullah.khan@math.uol.edu.pk


Conclusions in Engineering 45

fractional derivative .
In 2017, A.Raheem, Md.Maqbul15 considered the oscil-

latory behavior of solutions on the differential equation
with Riemann-Liouville fractional derivative, for t 6=tj

Dβ+,tu(x,t) +a(t)Dβ−1
+,t u(x,t) = b(t)4u(x,t) +

m∑
k=1

ck(t)4u(x,t− τk)−F (x,t)

under the impulsive condition,

Dβ−1
+,t u

(
x,t+j

)
−Dβ−1

+,t u
(
x,t−j

)
= σ (x,tj)Dβ−1

+,T u(x,tj) , j = 1,2, . . . .. (x,t) ∈ Ω.R+

With two kind of boundary condition

∂u(x,t)
∂N

+f(x,t)u(x,t) = 0, (u,t) ∈ ∂Ω ·R+, t 6= tj

and

u(x,t) = 0, (x,t) ∈ ∂Ω ·R+, t 6= tj

where a,b,ck ∈ PC[R+,R+], forcing term F ∈
PC[Ω̄.R+,R+],f ∈ PC[∂Ω,R+],and PC denotes the
class of functions which are piecewise continuous func-
tions in t with discontinuities of first kind only at t= tj ,
j=1,2,....and left continuous at t= tj , β ∈ (1,2) is a con-
stant ,4 is the Laplacian operator in Rn,Ω is a bounded
domain in Rn with a smooth boundary ∂Ω,Ω = Ω∪∂Ω,

N is the unit out normal vector to ∂Ω.
In 2019, Mouffak Benchohra , Samira Hamani and Yong
Zhou [3] dealt with the existence of oscillatory and
non oscillatory solutions for the following class of ini-
tial value problems for impulsive fractional differential
with Caputo-Hadamard derivative inclusion,


HcD

α
tk
y(t) ∈ F (t,y(t)), t ∈ J = (tk, tk+ 1) ,

y
(
t+K
)

= Ik
(
y
(
t−k
))
,k = 1,2, . . . . . . .

y(1) = y∗.

By using the concept of upper and lower solutions
and the fixed point, theorem,the authors,obtained the
existence theorems of oscillatory and non-oscillatory so-
lutions of the above equation.
Motivated by the above papers, we consider the oscilla-
tory behavior os solutions of following fractional impul-
sive differential equation


cDβax(t) = λe(t) +f(t,x(t)) +

∑n
i=1 bi(t)gi (x(t− τi))

t ∈ [o,T ]
∆x(tk) = yk,∆x′ (tk) = yk,k = 1,2, . . . . . . .

x(t) = φ(t),x′(t) = φ̄(t), t ∈ [v,o]
αβ < 1

(1)

II. MAIN RESULTS

We are now in a position to state and prove our main
results.

Theorem 1 Suppose that 1 < α < 2, p > 1, γ >



Conclusions in Engineering 46

0, p(α− 2) + 1 > 0, p(γ− 1) + 1 > 0, q = p

p−1 , and

the function e(t) : J → R is continuous such that

1
t

∫ t

a
(t−s)α−1|e(s)|ds is bounded for all t≥ a (2)

and the function f(t,x) satisfies the following condi-
tions.
(i) f(t,x) is continuous in D = (t,x) : t ∈ J, x ∈ R.
(ii) There are continuous nonnegetive functions
g, h : R+ := [a,∞)→ R+, g is nondecreasing and
let 0< γ ≤ 3−α−1/p such that

|f(t,x)| ≤ tγ−1 h(t)g( |x|
t

), t > a, (t,x) ∈D, (3)

and

∫ ∞
a

sθq/phq(s)ds <∞, (4)

where θ := p(α+γ−3) + 1≤ 0.
(iii) ∫ ∞

a

dη

gq(η) →∞. (5)

The impulsive points meet the following condition.
(iv) There is a constant M such that

|
k∑
i=1

ȳi|< M, |
k∑
i=1

yi|< M, k = 1,2, ........

(6)
If x(t) is a solution of (1), then

lim
t→∞

sup |x(t)|
t

<∞ (7)

Proof. We obtain from (1) that

|x(t)| ≤ φ(t) + λ

Γ(β)

∫ t

0
(t−s)β−1|e(s)|ds+

∣∣∣∣∣
k∑
i=1

yi

∣∣∣∣∣ t+
∣∣∣∣∣
k∑
i=1

yi

∣∣∣∣∣+ 1
Γ(β)

∫ t

0
(t−s)β−1

|f(s,x(s))|ds+ 1
Γ(β)

n∑
i=1

bi(s)
∫ t

0
(t−s)β−1gi(x(s− τi))ds t ∈ (tk, tk+1] .

By applying condition (2) we get,

|x(t)| ≤ φ(t) + λ
Γ(β)

∫ t
0 (t−s)β−1|e(s)|ds+

∣∣∣∑k
i=1 ȳi

∣∣∣ t+∑k
i=1 yi

∣∣∣ + 1
Γ(β)

∫ t
0 (t−s)β−1

sγ−1h(s)g
(
|x(s)|
s

)
ds+

1
Γ(β)

∑n
i=1 bi(s)

∫ t
0 (t−s)β−1gi(x(s− τi))ds t ∈ (tk, tk+1]

From (1), we obtain 1
t

∫ t
0 (t−s)β−1|e(s)|ds≤ c for all

t≥ a, where d is a constant.
Let C(k) = φ(t) + |

∑k
i=1 ȳi| + |

∑k
i=1 yi| + λc

Γ(β) +
1

Γβ
∑n
i=1 bi(s). We have
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|x(t)| ≤ C(k)t+ 1
Γ(β)

∫ t

0
(t−s)β−1sγ−1h(s)g

(
|x(s)|
s

)
ds+

∫ t

0
(t−s)β−1gi(x(s− τi))ds

t ∈ (tk, tk+1]

≤ C(k)t+ 1
Γ(β) t

∫ t

0
(t−s)β−2sγ−1h(s)g

(
|x(s)|
s

)
ds+

∫ t

0
(t−s)β−1gi(x(s− τi))ds

t ∈ (tk, tk+1] .

This yields the inequality.

|x(t)|
t ≤ C(k) + 1

Γ(β)
∫ t
0 (t−s)β−2sγ−1h(s)g

(
|x(s)|
s

)
ds+ 1

t

∫ t
0 (t−s)β−1gi(x(s− τi))ds

t ∈ (tk, tk+1] .
(8)

If we denote that z(t) is the right side of the inequal-
ity (7). We obtain the inequality

|x(t)|
t
≤ z(t,k), t ∈ (tk, tk+1] (9)

Since the function g is non decreasing, the inequality
(8) yields

g( |x(t)|
t

)≤ g(z(t,k)), t ∈ (tk, tk+1]

g

(
|x(t)|
t

)
≤ g(z(t,k)), t ∈ (tk, tk+1]

and from a definition z(t,k),we get

z(t,k)≤ 1 +C(k) + 1
Γ(β)

∫ t
0 (t−s)β−1sγ−1h(s)g(z(s,k))ds+

1
t

∫ t
0 (t−s)β−1gi(x(s− τi))ds t ∈ (tk, tk+1]

(10)

Where 0< α= β−1< 1. Applying Holders inequality and Lemma we obtain
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∫ t

0
(t−s)β−1sγ−1h(s)g(z(s,k))ds+

∫ t

0
(t−s)β−1gi(x(s− τi))ds

≤
(∫ t

0
(t−s)p(β−1)sp(γ−1)ds

)1/p (∫ t

0
hq(s)gq(z(s,k))ds

)1/q

+
(∫ t

0
(t−s)p(β−1)ds

)1/p

(∫ t

0
gqi (x(s− τi))ds

)1/q

≤
(∫ t

0
(t−s)p(β−1)sp(γ−1)ds

)1/p (∫ t

0
hq(s)gq(z(s,k))ds

)1/q

≤
(
Btθ

)1/p
(∫ t

0
hq(s)gq(z(s,k))ds

)1/q

+
(
B′tθ

)1/p
(∫ t

0
gqi (x(s− τi))ds

)1/q

, t ∈ (tk, tk+1]

where B := B(p(γ − 1) + 1 < p(β − 1) + 1), θ =
p(α+ γ − 3) + 1 ≤ 0. Using the fact that θ ≤ 0 and

t > s≥ 0, we have

∫ t

0
(t−s)β−1sγ−1h(s)g(z(s,k))ds+

∫ t

0
(t−s)β−1gi(x(s− τi))ds

≤B1/p
(∫ t

0
sθq/phq(s)gq(z(s,k))ds

)1/q (
B′tθ

)1/p
(∫ t

0
gqi (x(s− τi))ds

)1/q

, t ∈ (tk, tk+1]
(11)

Using (10) and the elementary inequality

(x+y)q ≤ 2q−1(xq +yq), x, y ≥ 0, q > 1

.
For t ∈ (tk, tk+1],we obtain from 9 that

zq(t,k)≤ 2q−1(1 +C(k))q +
(
B1/p 1

Γ(β)

)q ∫ t
0 s

θq/phq(s)gq(z(s,k))ds
)

+
(

1
tB
′1/p

)q ∫ t
0 g

qθ/p
i (x(s− τi))ds

If we denote

p1(k) = 2q−1 [(1 +C(k))q] , Q1 = 2q−1
((

B1/p 1
Γ(β)

)q
,R1 =

(
1
t
B′1/p

)q
,
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then

zq(t,k)≤ p1(k) +Q1

∫ t

0
sθq/phq(s)gq(z(s,k))ds+R1

∫ t

0
g
qθ/p
i (x(s− τi))ds, t ∈ (tk, tk+1] .

Denote

ω(η) = gq(η)

G(ξ) =
∫ ξ

zk

dη

ω(η) , zk = z
(
t+k ,k

) (12)

Since G(z(t,k)) =
∫ z(t,k)

zk

dη

gq(η) , condition (iii)

implies that limz(t,k)→∞ G(z(t,k)) =∞,
then by the Bihari Lemma16, we get

zq(t,k)≤K(k) :=G−1
(
G(p1(k)) +Q1

∫ t
0 s

θq/phq(s)ds

+R1
∫ t
0 g

qθ/p
i (x(s− τi))ds, t ∈ (tk, tk+1] , k = 1,2, . . . . . .

Because of condition (iv) and boundedness of P1(k).
Hence from (ii) we conclude K(k), k = 1,2, .... is
bounded.Then

zq(t,k)≤K = sup
k≥1

K(k), t > t1, k = 1,2, . . . . . .

We obtain that z(t,k) ≤ K1/q, and from (8), we
have

|x(t)|
t
≤K1/q, t≥ t1.

We conclude that

lim
t→∞

|x(t)|
t

<∞.

This completes the proof.

Theorem 2 Let the constants β, p, q, γ and θ be de-
fined as is in Theorem 2.1, conditions (1)-(5) hold.If
for any constant d̄ ∈ (MT (β) + φ̄?Γ(β), 1 +MΓ(β) +
φ̄?Γ(β)),

lim
t→∞

inf
[
d̄t+

∫ t

0
(t−s)β−1e(s)ds

]
=−∞ (13)

or

lim
t→∞

sup
[
d̄t+

∫ t

0
(t−s)β−1e(s)ds

]
=∞ (14)

then (1) is oscillatory.

III. CONCLUSION

In the final analysis, because of significant measure to
their vital functions in describing an assortment of bio-
logical, physiological, and technological occurrences, the
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investigation of differential equations with fractions and
regressive parabolic problems has grown dramatically.
Mastering complex structures, especially the rigidity
and electrical features of substance and the exploration
of rheological actions, have been found to be particularly
helpful for employing fractional differential equations,
which extends the conventional view of mathematical
equations to non-integer levels.These mathematical for-
mulas are growing becoming increasingly significant in
categories like physics, biology, control theory, and ar-
chitecture since they could symbolize processes contain-
ing memory and inherited features.
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